Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: comparison of the effects of increased intraocular pressure and systemic hypotension.

Tani T, Nagaoka T, Nakabayashi S, Yoshioka T, Yoshida A.

Invest Ophthalmol Vis Sci. 2014 Jan 20;55(1):360-7. doi: 10.1167/iovs.13-12591.

PMID:
24302588
2.

Role of nitric oxide in optic nerve head blood flow regulation during an experimental increase in intraocular pressure in healthy humans.

Schmidl D, Boltz A, Kaya S, Palkovits S, Told R, Napora KJ, Cherecheanu AP, Werkmeister RM, Garhofer G, Schmetterer L.

Exp Eye Res. 2013 Nov;116:247-53. doi: 10.1016/j.exer.2013.09.008. Epub 2013 Sep 20.

3.

Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors.

Nakabayashi S, Nagaoka T, Tani T, Sogawa K, Hein TW, Kuo L, Yoshida A.

Exp Eye Res. 2012 Oct;103:63-70. doi: 10.1016/j.exer.2012.08.007. Epub 2012 Aug 24.

PMID:
22940370
4.

Nitric oxide in retinal and choroidal blood flow autoregulation in newborn pigs: interactions with prostaglandins.

Hardy P, Nuyt AM, Abran D, St-Louis J, Varma DR, Chemtob S.

Pediatr Res. 1996 Mar;39(3):487-93.

PMID:
8929870
5.

Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure.

Simader C, Lung S, Weigert G, Kolodjaschna J, Fuchsjäger-Mayrl G, Schmetterer L, Polska E.

Invest Ophthalmol Vis Sci. 2009 Jan;50(1):372-7. doi: 10.1167/iovs.07-1614.

PMID:
19124845
6.

Role of neuronal nitric oxide synthase in regulating retinal blood flow during flicker-induced hyperemia in cats.

Yoshioka T, Nagaoka T, Song Y, Yokota H, Tani T, Yoshida A.

Invest Ophthalmol Vis Sci. 2015 May;56(5):3113-20. doi: 10.1167/iovs.14-15854.

PMID:
25783603
7.

Role of adenosine in the control of choroidal blood flow during changes in ocular perfusion pressure.

Schmidl D, Weigert G, Dorner GT, Resch H, Kolodjaschna J, Wolzt M, Garhofer G, Schmetterer L.

Invest Ophthalmol Vis Sci. 2011 Jul 29;52(8):6035-9. doi: 10.1167/iovs.11-7491.

PMID:
21697134
8.

Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT.

Zhi Z, Cepurna W, Johnson E, Jayaram H, Morrison J, Wang RK.

Microvasc Res. 2015 Sep;101:86-95. doi: 10.1016/j.mvr.2015.07.001. Epub 2015 Jul 14.

9.

Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure.

Schmidl D, Boltz A, Kaya S, Werkmeister R, Dragostinoff N, Lasta M, Polska E, Garhöfer G, Schmetterer L.

Invest Ophthalmol Vis Sci. 2012 Jul 1;53(8):4337-46. doi: 10.1167/iovs.11-9055.

PMID:
22661477
10.

Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J.

Invest Ophthalmol Vis Sci. 2014 May 29;55(7):4105-18. doi: 10.1167/iovs.13-13611. Erratum in: Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6247.

11.

Susceptibility of streptozotocin-induced diabetic rat retinal function and ocular blood flow to acute intraocular pressure challenge.

Wong VH, Vingrys AJ, Jobling AI, Bui BV.

Invest Ophthalmol Vis Sci. 2013 Mar 1;54(3):2133-41. doi: 10.1167/iovs.13-11595.

PMID:
23439594
12.

Involvement of glial cells in the autoregulation of optic nerve head blood flow in rabbits.

Shibata M, Sugiyama T, Kurimoto T, Oku H, Okuno T, Kobayashi T, Ikeda T.

Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3726-32. doi: 10.1167/iovs.11-9316.

PMID:
22589427
13.

Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits.

Okuno T, Oku H, Sugiyama T, Yang Y, Ikeda T.

Invest Ophthalmol Vis Sci. 2002 Mar;43(3):784-9.

PMID:
11867599
14.

Time course of changes in optic nerve head circulation after acute reduction in intraocular pressure.

Takayama J, Tomidokoro A, Tamaki Y, Araie M.

Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1409-19.

PMID:
15790909
15.

Role of nitric oxide in regulation of retinal blood flow in response to hyperoxia in cats.

Izumi N, Nagaoka T, Sato E, Sogawa K, Kagokawa H, Takahashi A, Kawahara A, Yoshida A.

Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4595-603. doi: 10.1167/iovs.07-1667. Epub 2008 Jun 14.

PMID:
18552394
16.

Disruption of gap junctions may be involved in impairment of autoregulation in optic nerve head blood flow of diabetic rabbits.

Shibata M, Oku H, Sugiyama T, Kobayashi T, Tsujimoto M, Okuno T, Ikeda T.

Invest Ophthalmol Vis Sci. 2011 Apr 5;52(5):2153-9. doi: 10.1167/iovs.10-6605.

PMID:
21220555
17.

Time course of the change in optic nerve head circulation after an acute increase in intraocular pressure.

Takayama J, Tomidokoro A, Ishii K, Tamaki Y, Fukaya Y, Hosokawa T, Araie M.

Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3977-85.

PMID:
12939318
18.

Quantification of dynamic blood flow autoregulation in optic nerve head of rhesus monkeys.

Liang Y, Fortune B, Cull G, Cioffi GA, Wang L.

Exp Eye Res. 2010 Feb;90(2):203-9. doi: 10.1016/j.exer.2009.10.009. Epub 2009 Oct 22.

PMID:
19853603
19.

Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

He Z, Nguyen CT, Armitage JA, Vingrys AJ, Bui BV.

PLoS One. 2012;7(2):e31104. doi: 10.1371/journal.pone.0031104. Epub 2012 Feb 16.

20.

Role of nitric oxide in regulation of retinal blood flow during hypercapnia in cats.

Sato E, Sakamoto T, Nagaoka T, Mori F, Takakusaki K, Yoshida A.

Invest Ophthalmol Vis Sci. 2003 Nov;44(11):4947-53.

PMID:
14578421

Supplemental Content

Support Center