Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators.

Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE.

Genes Dev. 2013 Dec 1;27(23):2590-601. doi: 10.1101/gad.229310.113.

2.

Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1.

Lee J, Levin DE.

Eukaryot Cell. 2015 Jul;14(7):719-25. doi: 10.1128/EC.00073-15. Epub 2015 May 29.

3.

Identification of positive regulators of the yeast fps1 glycerol channel.

Beese SE, Negishi T, Levin DE.

PLoS Genet. 2009 Nov;5(11):e1000738. doi: 10.1371/journal.pgen.1000738. Epub 2009 Nov 26.

4.

Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress.

Muir A, Roelants FM, Timmons G, Leskoske KL, Thorner J.

Elife. 2015 Aug 14;4. doi: 10.7554/eLife.09336.

6.

Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.

Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H.

Sci Signal. 2014 Feb 25;7(314):ra21. doi: 10.1126/scisignal.2004780.

PMID:
24570489
7.

The mitogen-activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1.

Ahmadpour D, Maciaszczyk-Dziubinska E, Babazadeh R, Dahal S, Migocka M, Andersson M, Wysocki R, Tamás MJ, Hohmann S.

FEBS Lett. 2016 Oct;590(20):3649-3659. doi: 10.1002/1873-3468.12390. Epub 2016 Sep 28.

PMID:
27607883
8.

Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.

Geijer C, Medrala-Klein D, Petelenz-Kurdziel E, Ericsson A, Smedh M, Andersson M, Goksör M, Nadal-Ribelles M, Posas F, Krantz M, Nordlander B, Hohmann S.

FEBS J. 2013 Aug;280(16):3854-67. doi: 10.1111/febs.12382. Epub 2013 Jul 5.

9.
10.

Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation.

Young C, Mapes J, Hanneman J, Al-Zarban S, Ota I.

Eukaryot Cell. 2002 Dec;1(6):1032-40.

11.
13.

Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity.

Kinclova-Zimmermannova O, Sychrova H.

Curr Genet. 2006 Apr;49(4):229-36. Epub 2006 Jan 10.

PMID:
16402204
14.

In yeast, loss of Hog1 leads to osmosensitivity of autophagy.

Prick T, Thumm M, Köhrer K, Häussinger D, Vom Dahl S.

Biochem J. 2006 Feb 15;394(Pt 1):153-61.

15.

Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation.

Babazadeh R, Furukawa T, Hohmann S, Furukawa K.

Sci Rep. 2014 Apr 15;4:4697. doi: 10.1038/srep04697.

16.

Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.

Kim J, Oh J, Sung GH.

Biochim Biophys Acta. 2016 Nov;1863(11):2551-2559. doi: 10.1016/j.bbamcr.2016.07.003. Epub 2016 Jul 12.

PMID:
27421986
17.

Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport.

Geijer C, Ahmadpour D, Palmgren M, Filipsson C, Klein DM, Tamás MJ, Hohmann S, Lindkvist-Petersson K.

J Biol Chem. 2012 Jul 6;287(28):23562-70. doi: 10.1074/jbc.M112.353482. Epub 2012 May 16.

18.
19.

Hog1: 20 years of discovery and impact.

Brewster JL, Gustin MC.

Sci Signal. 2014 Sep 16;7(343):re7. doi: 10.1126/scisignal.2005458. Review.

PMID:
25227612
20.

Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.

Singh V, Azad GK, Reddy M A, Baranwal S, Tomar RS.

Eur J Pharmacol. 2014 Aug 5;736:77-85. doi: 10.1016/j.ejphar.2014.04.032. Epub 2014 May 2.

PMID:
24797784

Supplemental Content

Support Center