Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 257

1.

Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes.

van Schaijk BC, Kumar TR, Vos MW, Richman A, van Gemert GJ, Li T, Eappen AG, Williamson KC, Morahan BJ, Fishbaugher M, Kennedy M, Camargo N, Khan SM, Janse CJ, Sim KL, Hoffman SL, Kappe SH, Sauerwein RW, Fidock DA, Vaughan AM.

Eukaryot Cell. 2014 May;13(5):550-9. doi: 10.1128/EC.00264-13. Epub 2013 Dec 2.

2.

Type II fatty acid synthesis is essential only for malaria parasite late liver stage development.

Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH.

Cell Microbiol. 2009 Mar;11(3):506-20. doi: 10.1111/j.1462-5822.2008.01270.x. Epub 2008 Dec 3.

3.

Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host.

Mikolajczak SA, Silva-Rivera H, Peng X, Tarun AS, Camargo N, Jacobs-Lorena V, Daly TM, Bergman LW, de la Vega P, Williams J, Aly AS, Kappe SH.

Mol Cell Biol. 2008 Oct;28(20):6196-207. doi: 10.1128/MCB.00553-08. Epub 2008 Aug 18.

4.

Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii.

Noden BH, Vaughan JA, Pumpuni CB, Beier JC.

Parasitol Int. 2011 Dec;60(4):440-6. doi: 10.1016/j.parint.2011.07.007. Epub 2011 Jul 13.

5.

Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity.

Lasonder E, Janse CJ, van Gemert GJ, Mair GR, Vermunt AM, Douradinha BG, van Noort V, Huynen MA, Luty AJ, Kroeze H, Khan SM, Sauerwein RW, Waters AP, Mann M, Stunnenberg HG.

PLoS Pathog. 2008 Oct;4(10):e1000195. doi: 10.1371/journal.ppat.1000195. Epub 2008 Oct 31.

6.

Total and putative surface proteomics of malaria parasite salivary gland sporozoites.

Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, Kappe SH.

Mol Cell Proteomics. 2013 May;12(5):1127-43. doi: 10.1074/mcp.M112.024505. Epub 2013 Jan 16.

7.

A sensitive enhanced chemiluminescent-ELISA for the detection of Plasmodium falciparum circumsporozoite antigen in midguts of Anopheles stephensi mosquitoes.

Grabias B, Zheng H, Mlambo G, Tripathi AK, Kumar S.

J Microbiol Methods. 2015 Jan;108:19-24. doi: 10.1016/j.mimet.2014.10.006. Epub 2014 Oct 22.

PMID:
25455023
8.

Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection.

Baton LA, Ranford-Cartwright LC.

Int J Parasitol. 2012;42(3):249-58. doi: 10.1016/j.ijpara.2011.12.005. Epub 2012 Feb 18.

9.

Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes.

Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA.

Malar J. 2006 Aug 3;5:68.

10.

Plasmodium yoelii vitamin B5 pantothenate transporter candidate is essential for parasite transmission to the mosquito.

Hart RJ, Lawres L, Fritzen E, Ben Mamoun C, Aly AS.

Sci Rep. 2014 Jul 11;4:5665. doi: 10.1038/srep05665.

11.

Disruption of Plasmodium sporozoite transmission by depletion of sporozoite invasion-associated protein 1.

Engelmann S, Silvie O, Matuschewski K.

Eukaryot Cell. 2009 Apr;8(4):640-8. doi: 10.1128/EC.00347-08. Epub 2009 Jan 30.

12.

Interactions between a fungal entomopathogen and malaria parasites within a mosquito vector.

Heinig RL, Thomas MB.

Malar J. 2015 Jan 28;14:22. doi: 10.1186/s12936-014-0526-x.

13.

The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites.

Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilcheze C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs WR Jr, Sacchettini JC, Heussler V, Sinnis P, Fidock DA.

Cell Host Microbe. 2008 Dec 11;4(6):567-78. doi: 10.1016/j.chom.2008.11.001.

14.

A scanning electron microscopic study of the sporogonic development of Plasmodium falciparum in Anopheles stephensi.

Meis JF, Wismans PG, Jap PH, Lensen AH, Ponnudurai T.

Acta Trop. 1992 Feb;50(3):227-36.

PMID:
1348599
15.

Infectivity of Plasmodium vivax and P. falciparum to Anopheles tessellatus; relationship between oocyst and sporozoite development.

Gamage-Mendis AC, Rajakaruna J, Weerasinghe S, Mendis C, Carter R, Mendis KN.

Trans R Soc Trop Med Hyg. 1993 Jan-Feb;87(1):3-6.

PMID:
8465388
16.

Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.

Li F, Bounkeua V, Pettersen K, Vinetz JM.

Malar J. 2016 Feb 24;15:111. doi: 10.1186/s12936-016-1161-5.

17.

Suppressive effect of azithromycin on Plasmodium berghei mosquito stage development and apicoplast replication.

Shimizu S, Osada Y, Kanazawa T, Tanaka Y, Arai M.

Malar J. 2010 Mar 10;9:73. doi: 10.1186/1475-2875-9-73.

18.

Simulating within-vector generation of the malaria parasite diversity.

Childs LM, Prosper OF.

PLoS One. 2017 May 22;12(5):e0177941. doi: 10.1371/journal.pone.0177941. eCollection 2017.

19.

The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy.

Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C.

Trop Med Int Health. 1998 Jan;3(1):21-8.

20.

Comparative susceptibility of three species of Anopheles from Belize, Central America, to Plasmodium falciparum (NF-54).

Grieco JP, Achee NL, Roberts DR, Andre RG.

J Am Mosq Control Assoc. 2005 Sep;21(3):279-90.

PMID:
16252518

Supplemental Content

Support Center