Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM.

Plant Physiol Biochem. 2014 Jan;74:141-55. doi: 10.1016/j.plaphy.2013.11.002. Epub 2013 Nov 19.

PMID:
24296250
2.

Study of polyamines during grape ripening indicate an important role of polyamine catabolism.

Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM.

Plant Physiol Biochem. 2013 Jun;67:105-19. doi: 10.1016/j.plaphy.2013.02.024. Epub 2013 Mar 14.

PMID:
23562795
3.

Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.

Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS.

BMC Plant Biol. 2011 Nov 2;11:149. doi: 10.1186/1471-2229-11-149.

4.

Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development.

Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C.

Plant Physiol Biochem. 2016 Mar;100:27-36. doi: 10.1016/j.plaphy.2016.01.001. Epub 2016 Jan 5.

PMID:
26773542
5.

Search for transcriptional and metabolic markers of grape pre-ripening and ripening and insights into specific aroma development in three Portuguese cultivars.

Agudelo-Romero P, Erban A, Sousa L, Pais MS, Kopka J, Fortes AM.

PLoS One. 2013;8(4):e60422. doi: 10.1371/journal.pone.0060422. Epub 2013 Apr 2.

6.
7.

Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.

Cvikrová M, Gemperlová L, Martincová O, Vanková R.

Plant Physiol Biochem. 2013 Dec;73:7-15. doi: 10.1016/j.plaphy.2013.08.005. Epub 2013 Aug 29.

PMID:
24029075
8.

Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.

Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM.

J Exp Bot. 2015 Apr;66(7):1769-85. doi: 10.1093/jxb/eru517. Epub 2015 Feb 11.

9.

Role of polyamines in peach fruit development and storage.

Liu J, Nada K, Pang X, Honda C, Kitashiba H, Moriguchi T.

Tree Physiol. 2006 Jun;26(6):791-8.

PMID:
16510395
10.

Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress.

Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J.

Plant Physiol Biochem. 2012 Aug;57:200-9. doi: 10.1016/j.plaphy.2012.05.015. Epub 2012 Jun 4.

PMID:
22738864
11.

Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress.

Hu X, Xu Z, Xu W, Li J, Zhao N, Zhou Y.

Plant Physiol Biochem. 2015 Jul;92:1-10. doi: 10.1016/j.plaphy.2015.04.006. Epub 2015 Apr 11.

PMID:
25885476
12.

Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape.

Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD.

Planta. 2010 Jun;232(1):219-34. doi: 10.1007/s00425-010-1165-2. Epub 2010 Apr 21.

13.

Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.

Carbonell-Bejerano P, Santa María E, Torres-Pérez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sánchez-Díaz M, Antolín MC, Martínez-Zapater JM.

Plant Cell Physiol. 2013 Jul;54(7):1200-16. doi: 10.1093/pcp/pct071. Epub 2013 May 9.

PMID:
23659918
14.

Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system.

Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC.

Gene. 2014 Mar 1;537(1):70-8. doi: 10.1016/j.gene.2013.12.021. Epub 2013 Dec 21.

PMID:
24365592
15.

Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone.

Gomez-Jimenez MC, Paredes MA, Gallardo M, Sanchez-Calle IM.

J Plant Physiol. 2010 Nov 15;167(17):1432-41. doi: 10.1016/j.jplph.2010.05.020. Epub 2010 Jul 18.

PMID:
20643493
16.

Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis.

Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA.

Plant Physiol. 2008 Aug;147(4):1845-57. doi: 10.1104/pp.108.123802. Epub 2008 Jun 26.

17.

A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries.

Gouthu S, O'Neil ST, Di Y, Ansarolia M, Megraw M, Deluc LG.

J Exp Bot. 2014 Nov;65(20):5889-902. doi: 10.1093/jxb/eru329. Epub 2014 Aug 18.

18.

The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants.

Filippou P, Antoniou C, Fotopoulos V.

Free Radic Biol Med. 2013 Mar;56:172-83. doi: 10.1016/j.freeradbiomed.2012.09.037. Epub 2012 Oct 3.

PMID:
23041351
19.

Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene.

Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T, Handa AK, Mattoo AK.

Amino Acids. 2014 Mar;46(3):729-42. doi: 10.1007/s00726-013-1624-8. Epub 2013 Dec 15.

PMID:
24337930
20.

Catabolism of polyamines.

Seiler N.

Amino Acids. 2004 Jun;26(3):217-33. Epub 2004 Apr 20. Review.

PMID:
15221502

Supplemental Content

Support Center