Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato.

Zhang N, Liu B, Ma C, Zhang G, Chang J, Si H, Wang D.

Mol Biol Rep. 2014 Jan;41(1):505-17. doi: 10.1007/s11033-013-2886-7. Epub 2013 Dec 1.

PMID:
24293150
2.
3.

Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea.

Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M.

BMC Plant Biol. 2015 Jan 21;15:9. doi: 10.1186/s12870-014-0405-1.

4.

Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

Gong L, Zhang H, Gan X, Zhang L, Chen Y, Nie F, Shi L, Li M, Guo Z, Zhang G, Song Y.

PLoS One. 2015 May 26;10(5):e0128041. doi: 10.1371/journal.pone.0128041. eCollection 2015.

5.

Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance.

Shin D, Moon SJ, Han S, Kim BG, Park SR, Lee SK, Yoon HJ, Lee HE, Kwon HB, Baek D, Yi BY, Byun MO.

Plant Physiol. 2011 Jan;155(1):421-32. doi: 10.1104/pp.110.163634. Epub 2010 Oct 27.

6.

Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions.

Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, Qiu DZ, Yang ZL, Chen SL.

BMC Genomics. 2013 Oct 6;14:687. doi: 10.1186/1471-2164-14-687.

7.

Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

Liu C, Zhang X, Zhang K, An H, Hu K, Wen J, Shen J, Ma C, Yi B, Tu J, Fu T.

Int J Mol Sci. 2015 Aug 11;16(8):18752-77. doi: 10.3390/ijms160818752.

8.

Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS.

DNA Res. 2013 Aug;20(4):403-23. doi: 10.1093/dnares/dst019. Epub 2013 May 5.

9.

Transcriptomic Analysis of Drought Stress Responses in Ammopiptanthus mongolicus Leaves Using the RNA-Seq Technique.

Gao F, Wang J, Wei S, Li Z, Wang N, Li H, Feng J, Li H, Zhou Y, Zhang F.

PLoS One. 2015 Apr 29;10(4):e0124382. doi: 10.1371/journal.pone.0124382. eCollection 2015.

10.

Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins.

Charfeddine S, Saïdi MN, Charfeddine M, Gargouri-Bouzid R.

Mol Biol Rep. 2015 Jul;42(7):1163-74. doi: 10.1007/s11033-015-3853-2. Epub 2015 Feb 1.

PMID:
25638043
11.

Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.

Mehta RH, Ponnuchamy M, Kumar J, Reddy NR.

Funct Integr Genomics. 2017 Jan;17(1):1-25. doi: 10.1007/s10142-016-0523-y. Epub 2016 Oct 5.

PMID:
27709374
12.

A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening.

Gangadhar BH, Yu JW, Sajeesh K, Park SW.

Mol Genet Genomics. 2014 Apr;289(2):185-201. doi: 10.1007/s00438-013-0795-z. Epub 2013 Dec 20.

PMID:
24357347
13.

The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption.

Carvalho HH, Brustolini OJ, Pimenta MR, Mendes GC, Gouveia BC, Silva PA, Silva JC, Mota CS, Soares-Ramos JR, Fontes EP.

PLoS One. 2014 Jan 29;9(1):e86661. doi: 10.1371/journal.pone.0086661. eCollection 2014.

14.

Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq.

Li KQ, Xu XY, Huang XS.

PLoS One. 2016 Feb 22;11(2):e0149352. doi: 10.1371/journal.pone.0149352. eCollection 2016.

15.
16.

Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.

Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z.

BMC Genomics. 2014 Nov 26;15:1026. doi: 10.1186/1471-2164-15-1026.

17.

Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars.

Mofatto LS, Carneiro Fde A, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GA, Andrade AC, Marraccini P.

BMC Plant Biol. 2016 Apr 19;16:94. doi: 10.1186/s12870-016-0777-5.

18.

Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.).

Legay S, Lefèvre I, Lamoureux D, Barreda C, Luz RT, Gutierrez R, Quiroz R, Hoffmann L, Hausman JF, Bonierbale M, Evers D, Schafleitner R.

Funct Integr Genomics. 2011 Jun;11(2):275-91. doi: 10.1007/s10142-010-0206-z. Epub 2011 Jan 28.

PMID:
21274588
19.

Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei.

Dong Y, Fan G, Zhao Z, Deng M.

Funct Integr Genomics. 2014 Sep;14(3):479-91. doi: 10.1007/s10142-014-0373-4. Epub 2014 May 7.

20.

Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, Rothstein SJ.

BMC Genomics. 2016 Apr 29;17:312. doi: 10.1186/s12864-016-2659-5.

Supplemental Content

Support Center