Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids.

Garcia AA, Mollinari M, Marconi TG, Serang OR, Silva RR, Vieira ML, Vicentini R, Costa EA, Mancini MC, Garcia MO, Pastina MM, Gazaffi R, Martins ER, Dahmer N, Sforça DA, Silva CB, Bundock P, Henry RJ, Souza GM, van Sluys MA, Landell MG, Carneiro MS, Vincentz MA, Pinto LR, Vencovsky R, Souza AP.

Sci Rep. 2013 Dec 2;3:3399. doi: 10.1038/srep03399.

2.

Quantitative SNP genotyping of polyploids with MassARRAY and other platforms.

Mollinari M, Serang O.

Methods Mol Biol. 2015;1245:215-41. doi: 10.1007/978-1-4939-1966-6_17.

PMID:
25373761
3.

Efficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids.

Serang O, Mollinari M, Garcia AA.

PLoS One. 2012;7(2):e30906. doi: 10.1371/journal.pone.0030906. Epub 2012 Feb 17.

4.

Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum.

Grativol C, Regulski M, Bertalan M, McCombie WR, da Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA, Ferreira PC.

Plant J. 2014 Jul;79(1):162-72. doi: 10.1111/tpj.12539. Epub 2014 Jun 17.

5.

Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes.

Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R.

BMC Genomics. 2010 Apr 23;11:261. doi: 10.1186/1471-2164-11-261.

6.

Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J; International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E.

Plant Biotechnol J. 2014 Aug;12(6):787-96. doi: 10.1111/pbi.12183. Epub 2014 Mar 20.

7.

Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant.

Bundock PC, Casu RE, Henry RJ.

Plant Biotechnol J. 2012 Aug;10(6):657-67. doi: 10.1111/j.1467-7652.2012.00707.x. Epub 2012 May 24.

8.

Characterisation of single nucleotide polymorphisms in sugarcane ESTs.

Cordeiro GM, Eliott F, McIntyre CL, Casu RE, Henry RJ.

Theor Appl Genet. 2006 Jul;113(2):331-43. Epub 2006 May 20.

PMID:
16791699
9.

Functionally relevant microsatellites in sugarcane unigenes.

Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T.

BMC Plant Biol. 2010 Nov 17;10:251. doi: 10.1186/1471-2229-10-251.

10.

A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers.

Aitken KS, McNeil MD, Hermann S, Bundock PC, Kilian A, Heller-Uszynska K, Henry RJ, Li J.

BMC Genomics. 2014 Feb 24;15:152. doi: 10.1186/1471-2164-15-152.

11.

Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane.

Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J.

BMC Plant Biol. 2014 Jul 26;14:190. doi: 10.1186/s12870-014-0190-x.

12.

Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes.

Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J.

BMC Genomics. 2010 Dec 14;11:702. doi: 10.1186/1471-2164-11-702.

13.

Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing.

Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ.

Plant Biotechnol J. 2009 May;7(4):347-54. doi: 10.1111/j.1467-7652.2009.00401.x.

14.

Haplotype analysis of sucrose synthase gene family in three Saccharum species.

Zhang J, Arro J, Chen Y, Ming R.

BMC Genomics. 2013 May 10;14:314. doi: 10.1186/1471-2164-14-314.

15.

Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane.

Raboin LM, Pauquet J, Butterfield M, D'Hont A, Glaszmann JC.

Theor Appl Genet. 2008 Mar;116(5):701-14. doi: 10.1007/s00122-007-0703-1. Epub 2008 Jan 15.

PMID:
18196216
16.

Natural Allelic Variations in Highly Polyploidy Saccharum Complex.

Song J, Yang X, Resende MF Jr, Neves LG, Todd J, Zhang J, Comstock JC, Wang J.

Front Plant Sci. 2016 Jun 8;7:804. doi: 10.3389/fpls.2016.00804. eCollection 2016.

17.

Full-length enriched cDNA libraries and ORFeome analysis of sugarcane hybrid and ancestor genotypes.

Nishiyama MY Jr, Ferreira SS, Tang PZ, Becker S, Pörtner-Taliana A, Souza GM.

PLoS One. 2014 Sep 15;9(9):e107351. doi: 10.1371/journal.pone.0107351. eCollection 2014.

18.

Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes.

Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH.

Genome. 2002 Oct;45(5):794-803.

PMID:
12416611
19.
20.

Genomic and expression plasticity of polyploidy.

Jackson S, Chen ZJ.

Curr Opin Plant Biol. 2010 Apr;13(2):153-9. doi: 10.1016/j.pbi.2009.11.004. Epub 2009 Dec 22.

Supplemental Content

Support Center