Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.

ten Hoeve M, Hutchings NJ, Peters GM, Svanström M, Jensen LS, Bruun S.

J Environ Manage. 2014 Jan;132:60-70. doi: 10.1016/j.jenvman.2013.10.023. Epub 2013 Nov 27.

PMID:
24291578
2.

Modelling the potential of slurry management technologies to reduce the constraints of environmental legislation on pig production.

Hutchings NJ, ten Hoeve M, Jensen R, Bruun S, Søtoft LF.

J Environ Manage. 2013 Nov 30;130:447-56. doi: 10.1016/j.jenvman.2013.08.063. Epub 2013 Oct 31.

PMID:
24184986
3.

Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - A life cycle assessment.

Ten Hoeve M, Gómez-Muñoz B, Jensen LS, Bruun S.

J Environ Manage. 2016 Oct 1;181:710-720. doi: 10.1016/j.jenvman.2016.08.028. Epub 2016 Aug 25.

PMID:
27566935
4.

Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment.

Lopez-Ridaura S, Werf Hv, Paillat JM, Le Bris B.

J Environ Manage. 2009 Feb;90(2):1296-304. doi: 10.1016/j.jenvman.2008.07.008. Epub 2008 Sep 14.

PMID:
18793822
5.

Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.

Popovic O, Jensen LS.

Water Res. 2012 Aug;46(12):3849-58. doi: 10.1016/j.watres.2012.04.020. Epub 2012 Apr 25.

PMID:
22591817
6.

Acidification of pig slurry before separation to improve slurry management on farms.

Regueiro I, Coutinho J, Balsari P, Popovic O, Fangueiro D.

Environ Technol. 2016 Aug;37(15):1906-13. doi: 10.1080/09593330.2015.1135992. Epub 2016 Feb 15.

PMID:
26695081
7.

Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

Sáez JA, Clemente R, Bustamante MÁ, Yañez D, Bernal MP.

J Environ Manage. 2017 May 1;192:57-67. doi: 10.1016/j.jenvman.2017.01.040. Epub 2017 Jan 28.

PMID:
28135588
8.

Sorption of 17β-estradiol to pig slurry separates and soil in the soil-slurry environment.

Amin MG, Petersen SO, Lægdsmand M.

J Environ Qual. 2012 Jan-Feb;41(1):179-87. doi: 10.2134/jeq2011.0168.

PMID:
22218186
9.

Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage.

Fangueiro D, Coutinho J, Chadwick D, Moreira N, Trindade H.

J Environ Qual. 2008 Oct 23;37(6):2322-31. doi: 10.2134/jeq2007.0330. Print 2008 Nov-Dec.

PMID:
18948486
10.

Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE).

Hansen TL, Bhander GS, Christensen TH, Bruun S, Jensen LS.

Waste Manag Res. 2006 Apr;24(2):153-66.

PMID:
16634230
11.

Acidification of animal slurry--a review.

Fangueiro D, Hjorth M, Gioelli F.

J Environ Manage. 2015 Feb 1;149:46-56. doi: 10.1016/j.jenvman.2014.10.001. Epub 2014 Oct 29. Review.

PMID:
25463570
12.

Environmental consequences of future biogas technologies based on separated slurry.

Hamelin L, Wesnæs M, Wenzel H, Petersen BM.

Environ Sci Technol. 2011 Jul 1;45(13):5869-77. doi: 10.1021/es200273j. Epub 2011 Jun 14.

PMID:
21671646
13.

Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

Fangueiro D, Pereira J, Bichana A, Surgy S, Cabral F, Coutinho J.

J Environ Manage. 2015 Oct 1;162:1-8. doi: 10.1016/j.jenvman.2015.07.032. Epub 2015 Jul 25.

PMID:
26217884
14.

Characterizing ammonia emissions from swine farms in eastern North Carolina: part 2--potential environmentally superior technologies for waste treatment.

Aneja VP, Arya SP, Rumsey IC, Kim DS, Bajwa K, Arkinson HL, Semunegus H, Dickey DA, Stefanski LA, Todd L, Mottus K, Robarge WP, Williams CM.

J Air Waste Manag Assoc. 2008 Sep;58(9):1145-57.

PMID:
18817107
15.

Environmental consequences of processing manure to produce mineral fertilizer and bio-energy.

De Vries JW, Groenestein CM, De Boer IJ.

J Environ Manage. 2012 Jul 15;102:173-83. doi: 10.1016/j.jenvman.2012.02.032. Epub 2012 Mar 28.

PMID:
22459014
16.

Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry.

Peters K, Hjorth M, Jensen LS, Magid J.

J Environ Qual. 2011 Jan-Feb;40(1):224-32.

PMID:
21488511
17.

Environmental assessment of nutrient recycling from biological pig slurry treatment--impact of fertilizer substitution and field emissions.

Brockmann D, Hanhoun M, Négri O, Hélias A.

Bioresour Technol. 2014 Jul;163:270-9. doi: 10.1016/j.biortech.2014.04.032. Epub 2014 Apr 19.

PMID:
24821206
18.

Life cycle assessment as development and decision support tool for wastewater resource recovery technology.

Fang LL, Valverde-Pérez B, Damgaard A, Plósz BG, Rygaard M.

Water Res. 2016 Jan 1;88:538-549. doi: 10.1016/j.watres.2015.10.016. Epub 2015 Oct 22.

PMID:
26540509
19.

Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

Gómez-Muñoz B, Case SD, Jensen LS.

J Environ Manage. 2016 Mar 1;168:236-44. doi: 10.1016/j.jenvman.2015.12.018. Epub 2015 Dec 21.

PMID:
26716355
20.

A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties.

Ros M, García C, Hernández T.

Waste Manag. 2006;26(10):1108-18. Epub 2005 Nov 15.

PMID:
16293406

Supplemental Content

Support Center