Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.

Shen S, Li M, Guo L, Jiang J, Mao SS.

J Colloid Interface Sci. 2014 Aug 1;427:20-4. doi: 10.1016/j.jcis.2013.10.063. Epub 2013 Nov 9.

PMID:
24290228
2.

Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.

Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS.

Nanoscale. 2013 Oct 21;5(20):9867-74. doi: 10.1039/c3nr03245k.

PMID:
23974247
3.

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS.

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

4.

Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.

Wang D, Chen H, Chang G, Lin X, Zhang Y, Aldalbahi A, Peng C, Wang J, Fan C.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14072-8. doi: 10.1021/acsami.5b03298. Epub 2015 Jun 19.

PMID:
26052922
5.

Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS.

ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19428-37. doi: 10.1021/acsami.6b04528. Epub 2016 Jul 25.

PMID:
27420603
6.

Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.

Gurudayal, Chee PM, Boix PP, Ge H, Yanan F, Barber J, Wong LH.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6852-9. doi: 10.1021/acsami.5b00417. Epub 2015 Mar 20.

PMID:
25790720
7.

A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.

Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW.

ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24053-62. doi: 10.1021/acsami.5b07065. Epub 2015 Oct 21.

PMID:
26488924
8.

Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.

Fu Y, Dong CL, Zhou Z, Lee WY, Chen J, Guo P, Zhao L, Shen S.

Phys Chem Chem Phys. 2016 Feb 7;18(5):3846-53. doi: 10.1039/c5cp07479g. Epub 2016 Jan 14.

PMID:
26763113
9.

A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation.

Han J, Zong X, Wang Z, Li C.

Phys Chem Chem Phys. 2014 Nov 21;16(43):23544-8. doi: 10.1039/c4cp03731f. Epub 2014 Oct 1.

PMID:
25272280
10.

A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.

Wang L, Nguyen NT, Schmuki P.

ChemSusChem. 2016 Aug 23;9(16):2048-53. doi: 10.1002/cssc.201600462. Epub 2016 Jun 27.

PMID:
27348809
11.

Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.

Wang P, Wang D, Lin J, Li X, Peng C, Gao X, Huang Q, Wang J, Xu H, Fan C.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2295-302. doi: 10.1021/am300395p. Epub 2012 Apr 3.

PMID:
22452535
12.

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4284-90. doi: 10.1039/c3cp54240h.

PMID:
24451918
13.

Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.

Mao A, Park NG, Han GY, Park JH.

Nanotechnology. 2011 Apr 29;22(17):175703. doi: 10.1088/0957-4484/22/17/175703. Epub 2011 Mar 16.

PMID:
21411913
14.

Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting.

Wang D, Chang G, Zhang Y, Chao J, Yang J, Su S, Wang L, Fan C, Wang L.

Nanoscale. 2016 Jul 7;8(25):12697-701. doi: 10.1039/c6nr03855g. Epub 2016 Jun 10.

PMID:
27283270
15.

Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.

Xiong D, Li W, Wang X, Liu L.

Nanotechnology. 2016 Sep 16;27(37):375401. doi: 10.1088/0957-4484/27/37/375401. Epub 2016 Aug 3.

PMID:
27486842
16.

Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.

Li X, Bassi PS, Boix PP, Fang Y, Wong LH.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16960-6. doi: 10.1021/acsami.5b01394. Epub 2015 Jul 30.

PMID:
26192330
17.

Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.

Gonçalves RH, Lima BH, Leite ER.

J Am Chem Soc. 2011 Apr 20;133(15):6012-9. doi: 10.1021/ja111454f. Epub 2011 Mar 28.

PMID:
21443221
18.

Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents.

Wang TH, Cheng YJ, Wu YY, Lin CA, Chiang CC, Hsieh YK, Wang CF, Huang CP.

Phys Chem Chem Phys. 2016 Oct 26;18(42):29300-29307.

PMID:
27731868
19.

Sn-doped hematite nanostructures for photoelectrochemical water splitting.

Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y.

Nano Lett. 2011 May 11;11(5):2119-25. doi: 10.1021/nl200708y. Epub 2011 Apr 8.

PMID:
21476581
20.

Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.

Shi X, Zhang K, Shin K, Moon JH, Lee TW, Park JH.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11717-22. doi: 10.1039/c3cp50459j.

PMID:
23752489

Supplemental Content

Support Center