Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Topical dual-stain difference imaging for rapid intra-operative tumor identification in fresh specimens.

Davis SC, Gibbs SL, Gunn JR, Pogue BW.

Opt Lett. 2013 Dec 1;38(23):5184-7. doi: 10.1364/OL.38.005184.

2.

uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection.

Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, Lipowska M, Wood WC, Wang YA.

Theranostics. 2013 Dec 17;4(1):106-18. doi: 10.7150/thno.7409. eCollection 2013.

3.

Non-invasive imaging of endothelial progenitor cells in tumor neovascularization using a novel dual-modality paramagnetic/near-infrared fluorescence probe.

Wang XY, Ju S, Li C, Peng XG, Chen AF, Mao H, Teng GJ.

PLoS One. 2012;7(11):e50575. doi: 10.1371/journal.pone.0050575. Epub 2012 Nov 30.

4.

Toward operative in vivo fluorescence imaging of the c-Met proto-oncogene for personalization of therapy in ovarian cancer.

Liu S, Zheng Y, Volpi D, El-Kasti M, Klotz D, Tullis I, Henricks A, Campo L, Myers K, Laios A, Thomas P, Ng T, Dhar S, Becker C, Vojnovic B, Ahmed AA.

Cancer. 2015 Jan 15;121(2):202-13. doi: 10.1002/cncr.29029. Epub 2014 Sep 10.

5.

Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe.

Xi L, Zhou G, Gao N, Yang L, Gonzalo DA, Hughes SJ, Jiang H.

Ann Surg Oncol. 2014 May;21(5):1602-9. doi: 10.1245/s10434-014-3541-9. Epub 2014 Feb 20.

6.

Novel intraoperative near-infrared fluorescence camera system for optical image-guided cancer surgery.

Mieog JS, Vahrmeijer AL, Hutteman M, van der Vorst JR, Drijfhout van Hooff M, Dijkstra J, Kuppen PJ, Keijzer R, Kaijzel EL, Que I, van de Velde CJ, Löwik CW.

Mol Imaging. 2010 Aug;9(4):223-31.

PMID:
20643025
7.

Enhancing surgical vision by using real-time imaging of αvβ3-integrin targeted near-infrared fluorescent agent.

Themelis G, Harlaar NJ, Kelder W, Bart J, Sarantopoulos A, van Dam GM, Ntziachristos V.

Ann Surg Oncol. 2011 Nov;18(12):3506-13. doi: 10.1245/s10434-011-1664-9. Epub 2011 Apr 21.

PMID:
21509632
8.

Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study.

Savastru D, Chang EW, Miclos S, Pitman MB, Patel A, Iftimia N.

J Biomed Opt. 2014 May;19(5):056001. doi: 10.1117/1.JBO.19.5.056001.

PMID:
24788370
9.

Dual in vivo photoacoustic and fluorescence imaging of HER2 expression in breast tumors for diagnosis, margin assessment, and surgical guidance.

Maeda A, Bu J, Chen J, Zheng G, DaCosta RS.

Mol Imaging. 2014;13. doi: 10.2310/7290.2014.00043.

PMID:
25430722
10.

Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

Zanganeh S, Xu Y, Hamby CV, Backer MV, Backer JM, Zhu Q.

J Biomed Opt. 2013 Dec;18(12):126014. doi: 10.1117/1.JBO.18.12.126014.

11.

Dynamic optical projection of acquired luminescence for aiding oncologic surgery.

Sarder P, Gullicksrud K, Mondal S, Sudlow GP, Achilefu S, Akers WJ.

J Biomed Opt. 2013 Dec;18(12):120501. doi: 10.1117/1.JBO.18.12.120501.

12.

Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

Muselaers CH, Rijpkema M, Bos DL, Langenhuijsen JF, Oyen WJ, Mulders PF, Oosterwijk E, Boerman OC.

J Urol. 2015 Aug;194(2):532-8. doi: 10.1016/j.juro.2015.02.041. Epub 2015 Feb 14.

PMID:
25686542
13.

Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.

Qi S, Miao Z, Liu H, Xu Y, Feng Y, Cheng Z.

Bioconjug Chem. 2012 Jun 20;23(6):1149-56. doi: 10.1021/bc200596a. Epub 2012 Jun 4.

PMID:
22621238
14.

Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe.

Verbeek FP, van der Vorst JR, Tummers QR, Boonstra MC, de Rooij KE, Löwik CW, Valentijn AR, van de Velde CJ, Choi HS, Frangioni JV, Vahrmeijer AL.

Ann Surg Oncol. 2014 Dec;21 Suppl 4:S528-37. doi: 10.1245/s10434-014-3524-x. Epub 2014 Feb 11.

15.

Quantitative, spectrally-resolved intraoperative fluorescence imaging.

Valdés PA, Leblond F, Jacobs VL, Wilson BC, Paulsen KD, Roberts DW.

Sci Rep. 2012;2:798. doi: 10.1038/srep00798. Epub 2012 Nov 12.

16.

DOT corrected fluorescence molecular tomography using targeted contrast agents for small animal tumor imaging.

Tan Y, Cao Z, Sajja HK, Lipowska M, Wang YA, Yang L, Jiang H.

J Xray Sci Technol. 2013;21(1):43-52. doi: 10.3233/XST-130365.

17.

Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.

Sorace AG, Saini R, Rosenthal E, Warram JM, Zinn KR, Hoyt K.

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):281-9. doi: 10.1109/TUFFC.2013.2564.

18.

A novel imaging system permits real-time in vivo tumor bed assessment after resection of naturally occurring sarcomas in dogs.

Eward WC, Mito JK, Eward CA, Carter JE, Ferrer JM, Kirsch DG, Brigman BE.

Clin Orthop Relat Res. 2013 Mar;471(3):834-42. doi: 10.1007/s11999-012-2560-8.

19.

Tailoring Adjuvant Radiation Therapy by Intraoperative Imaging to Detect Residual Cancer.

Whitley MJ, Weissleder R, Kirsch DG.

Semin Radiat Oncol. 2015 Oct;25(4):313-21. doi: 10.1016/j.semradonc.2015.05.005. Epub 2015 May 14. Review.

20.

In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia.

Bao B, Groves K, Zhang J, Handy E, Kennedy P, Cuneo G, Supuran CT, Yared W, Rajopadhye M, Peterson JD.

PLoS One. 2012;7(11):e50860. doi: 10.1371/journal.pone.0050860. Epub 2012 Nov 30.

Supplemental Content

Support Center