Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Fos-icking for control of angiogenesis: increasing the longevity of peritoneal dialysis.

Bonder CS, Ebert LM.

Kidney Int. 2013 Dec;84(6):1065-7. doi: 10.1038/ki.2013.306.

PMID:
24280746
2.

The proto-oncogene c-Fos transcriptionally regulates VEGF production during peritoneal inflammation.

Catar R, Witowski J, Wagner P, Annett Schramm I, Kawka E, Philippe A, Dragun D, Jörres A.

Kidney Int. 2013 Dec;84(6):1119-28. doi: 10.1038/ki.2013.217. Epub 2013 Jun 12.

PMID:
23760290
3.

Update on mechanisms of ultrafiltration failure.

Kim YL.

Perit Dial Int. 2009 Feb;29 Suppl 2:S123-7. Review.

PMID:
19270200
4.

Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.

Aroeira LS, Aguilera A, Selgas R, Ramírez-Huesca M, Pérez-Lozano ML, Cirugeda A, Bajo MA, del Peso G, Sánchez-Tomero JA, Jiménez-Heffernan JA, López-Cabrera M.

Am J Kidney Dis. 2005 Nov;46(5):938-48.

PMID:
16253736
5.

Hepatocyte growth factor/scatter factor released during peritonitis is active on mesothelial cells.

Rampino T, Cancarini G, Gregorini M, Guallini P, Maggio M, Ranghino A, Soccio G, Dal Canton A.

Am J Pathol. 2001 Oct;159(4):1275-85.

6.

Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate.

Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S.

Am J Physiol Renal Physiol. 2010 Mar;298(3):F721-33. doi: 10.1152/ajprenal.00368.2009. Epub 2009 Dec 16.

7.

Epithelial-to-mesenchymal transition of the mesothelial cell--its role in the response of the peritoneum to dialysis.

Selgas R, Bajo A, Jiménez-Heffernan JA, Sánchez-Tomero JA, Del Peso G, Aguilera A, López-Cabrera M.

Nephrol Dial Transplant. 2006 Jul;21 Suppl 2:ii2-7. Review.

PMID:
16825254
8.
9.

Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure.

López-Cabrera M, Aguilera A, Aroeira LS, Ramírez-Huesca M, Pérez-Lozano ML, Jiménez-Heffernan JA, Bajo MA, del Peso G, Sánchez-Tomero JA, Selgas R.

Perit Dial Int. 2006 Jan-Feb;26(1):26-34. Review.

PMID:
16538870
10.

TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis.

Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, Hattori R, Matsukawa Y, Mizuno T, Noda Y, Nishimura H, Nishio R, Maruyama S, Imai E, Matsuo S, Takei Y.

J Am Soc Nephrol. 2013 Oct;24(10):1627-42. doi: 10.1681/ASN.2012030226. Epub 2013 Aug 29.

11.

Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients.

Aguilera A, Yáñez-Mo M, Selgas R, Sánchez-Madrid F, López-Cabrera M.

Curr Opin Investig Drugs. 2005 Mar;6(3):262-8.

PMID:
15816502
12.

Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat.

Park SH, Lee EG, Kim IS, Kim YJ, Cho DK, Kim YL.

Perit Dial Int. 2004 Mar-Apr;24(2):115-22.

PMID:
15119632
13.

Compare the effects of intravenous and intraperitoneal mesenchymal stem cell transplantation on ultrafiltration failure in a rat model of chronic peritoneal dialysis.

Baştuğ F, Gündüz Z, Tülpar S, Torun YA, Akgün H, Dörterler E, Düşünsel R, Poyrazoğlu H, Baştuğ O, Dursun İ.

Ren Fail. 2014 Oct;36(9):1428-35. doi: 10.3109/0886022X.2014.945216. Epub 2014 Aug 11.

PMID:
25110139
14.

Vascular endothelial growth factor expression in peritoneal mesothelial cells undergoing transdifferentiation.

Zhang J, Oh KH, Xu H, Margetts PJ.

Perit Dial Int. 2008 Sep-Oct;28(5):497-504.

PMID:
18708543
15.

Regulation of CCN2/CTGF and related cytokines in cultured peritoneal cells under conditions simulating peritoneal dialysis.

Leung JC, Chan LY, Tam KY, Tang SC, Lam MF, Cheng AS, Chu KM, Lai KN.

Nephrol Dial Transplant. 2009 Feb;24(2):458-69. doi: 10.1093/ndt/gfn524. Epub 2008 Sep 19.

PMID:
18805993
16.

An update on RAAS blockade and peritoneal membrane preservation: the ace of art.

Wontanatawatot W, Eiam-Ong S, Leelahavanichkul A, Kanjanabuch T.

J Med Assoc Thai. 2011 Sep;94 Suppl 4:S175-83. Review.

PMID:
22043587
17.

Mediators of inflammation and fibrosis.

Lai KN, Tang SC, Leung JC.

Perit Dial Int. 2007 Jun;27 Suppl 2:S65-71. Review.

PMID:
17556333
18.

Cyclooxygenase-2 and vascular endothelial growth factor expressions are involved in ultrafiltration failure.

Guo J, Xiao J, Gao H, Jin Y, Zhao Z, Jiao W, Liu Z, Zhao Z.

J Surg Res. 2014 May 15;188(2):527-536.e2. doi: 10.1016/j.jss.2014.01.028. Epub 2014 Jan 24.

PMID:
24559584
19.

Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum.

Margetts PJ, Kolb M, Yu L, Hoff CM, Holmes CJ, Anthony DC, Gauldie J.

Am J Pathol. 2002 Jun;160(6):2285-94.

20.

Mesenchymal stem cell transplantation may provide a new therapy for ultrafiltration failure in chronic peritoneal dialysis.

Bastug F, Gündüz Z, Tülpar S, Torun YA, Akgün H, Dörterler E, Düsünsel R, Poyrazoglu H, Bastug O, Dursun I, Yel S.

Nephrol Dial Transplant. 2013 Oct;28(10):2493-501. doi: 10.1093/ndt/gft089. Epub 2013 Jul 22.

PMID:
23880789

Supplemental Content

Support Center