Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 332

1.

Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.

Li C, Li Y, Bai L, Zhang T, He C, Yan Y, Yu X.

Physiol Plant. 2014 Aug;151(4):406-22. doi: 10.1111/ppl.12122. Epub 2013 Nov 27.

PMID:
24279842
2.

Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.

Chen L, Wang T, Zhao M, Zhang W.

Plant Sci. 2012 Mar;184:14-9. doi: 10.1016/j.plantsci.2011.11.007. Epub 2011 Nov 17.

PMID:
22284705
3.

A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber.

Mao W, Li Z, Xia X, Li Y, Yu J.

PLoS One. 2012;7(3):e33040. doi: 10.1371/journal.pone.0033040. Epub 2012 Mar 30.

4.

Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.

Chen L, Wang T, Zhao M, Tian Q, Zhang WH.

Planta. 2012 Feb;235(2):375-86. doi: 10.1007/s00425-011-1514-9. Epub 2011 Sep 10.

PMID:
21909758
5.

Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.

Paul S, Kundu A, Pal A.

J Integr Plant Biol. 2014 Jan;56(1):15-23. doi: 10.1111/jipb.12115. Epub 2013 Dec 19.

PMID:
24138283
6.

Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing.

Liu N, Yang J, Guo S, Xu Y, Zhang M.

PLoS One. 2013;8(2):e57359. doi: 10.1371/journal.pone.0057359. Epub 2013 Feb 26.

7.

High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

Martínez G, Forment J, Llave C, Pallás V, Gómez G.

PLoS One. 2011;6(5):e19523. doi: 10.1371/journal.pone.0019523. Epub 2011 May 16.

8.

Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.

Ye X, Song T, Liu C, Feng H, Liu Z.

Hereditas. 2014 Dec;151(6):220-8. doi: 10.1111/hrd2.00057.

9.

Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.

Sun Z, He Y, Li J, Wang X, Chen J.

Plant Cell Physiol. 2015 Apr;56(4):688-99. doi: 10.1093/pcp/pcu213. Epub 2014 Dec 21.

PMID:
25535197
10.

Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.

Hao DC, Yang L, Xiao PG, Liu M.

Physiol Plant. 2012 Dec;146(4):388-403. doi: 10.1111/j.1399-3054.2012.01668.x. Epub 2012 Jul 25.

PMID:
22708792
11.

Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.

Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L.

J Exp Bot. 2013 Nov;64(14):4271-87. doi: 10.1093/jxb/ert240. Epub 2013 Sep 7.

12.

Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.

Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS.

BMC Plant Biol. 2011 Jan 10;11:5. doi: 10.1186/1471-2229-11-5.

13.

Identification of the conserved and novel miRNAs in Mulberry by high-throughput sequencing.

Jia L, Zhang D, Qi X, Ma B, Xiang Z, He N.

PLoS One. 2014 Aug 13;9(8):e104409. doi: 10.1371/journal.pone.0104409. eCollection 2014.

14.

Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

Geng M, Li H, Jin C, Liu Q, Chen C, Song W, Wang C.

Planta. 2014 Feb;239(2):341-56. doi: 10.1007/s00425-013-1986-x. Epub 2013 Oct 30.

PMID:
24170336
15.

Characterization of the small RNA component of leaves and fruits from four different cucurbit species.

Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R.

BMC Genomics. 2012 Jul 23;13:329. doi: 10.1186/1471-2164-13-329.

16.

Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.

Li YF, Zheng Y, Jagadeeswaran G, Sunkar R.

Plant Sci. 2013 Apr;203-204:17-24. doi: 10.1016/j.plantsci.2012.12.014. Epub 2013 Jan 3.

PMID:
23415324
17.

Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa.

Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y.

J Exp Bot. 2012 Jan;63(2):1025-38. doi: 10.1093/jxb/err337. Epub 2011 Oct 24.

18.

Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response.

Zhang Q, Zhao C, Li M, Sun W, Liu Y, Xia H, Sun M, Li A, Li C, Zhao S, Hou L, Picimbon JF, Wang X, Zhao Y.

BMC Plant Biol. 2013 Nov 15;13:180. doi: 10.1186/1471-2229-13-180.

19.

Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.

Wang T, Chen L, Zhao M, Tian Q, Zhang WH.

BMC Genomics. 2011 Jul 15;12:367. doi: 10.1186/1471-2164-12-367.

20.

High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa.

Zhou B, Fan P, Li Y.

Gene. 2014 Sep 10;548(1):68-74. doi: 10.1016/j.gene.2014.07.010. Epub 2014 Jul 9.

PMID:
25016069

Supplemental Content

Support Center