Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment.

Kvitek DJ, Sherlock G.

PLoS Genet. 2013 Nov;9(11):e1003972. doi: 10.1371/journal.pgen.1003972. Epub 2013 Nov 21.

2.

Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast.

Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF, Fisher DS, Sherlock G, Petrov DA.

Cell. 2016 Sep 8;166(6):1585-1596.e22. doi: 10.1016/j.cell.2016.08.002. Epub 2016 Sep 1.

3.

Shifting fitness landscapes in response to altered environments.

Hietpas RT, Bank C, Jensen JD, Bolon DNA.

Evolution. 2013 Dec;67(12):3512-22. doi: 10.1111/evo.12207. Epub 2013 Aug 2.

4.

Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency.

Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F.

PLoS Genet. 2011 Aug;7(8):e1002202. doi: 10.1371/journal.pgen.1002202. Epub 2011 Aug 4.

5.

Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations.

Gorter FA, Derks MFL, van den Heuvel J, Aarts MGM, Zwaan BJ, de Ridder D, de Visser JAGM.

Mol Biol Evol. 2017 Oct 1;34(10):2613-2626. doi: 10.1093/molbev/msx185.

PMID:
28957501
6.

From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation.

Mustonen V, Lässig M.

Trends Genet. 2009 Mar;25(3):111-9. doi: 10.1016/j.tig.2009.01.002. Epub 2009 Feb 18.

PMID:
19232770
7.

Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.

Hong J, Gresham D.

PLoS Genet. 2014 Jan;10(1):e1004041. doi: 10.1371/journal.pgen.1004041. Epub 2014 Jan 9.

8.

Differential paralog divergence modulates genome evolution across yeast species.

Sanchez MR, Miller AW, Liachko I, Sunshine AB, Lynch B, Huang M, Alcantara E, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ.

PLoS Genet. 2017 Feb 14;13(2):e1006585. doi: 10.1371/journal.pgen.1006585. eCollection 2017 Feb.

9.

The genomic landscape of compensatory evolution.

Szamecz B, Boross G, Kalapis D, Kovács K, Fekete G, Farkas Z, Lázár V, Hrtyan M, Kemmeren P, Groot Koerkamp MJ, Rutkai E, Holstege FC, Papp B, Pál C.

PLoS Biol. 2014 Aug 26;12(8):e1001935. doi: 10.1371/journal.pbio.1001935. eCollection 2014 Aug.

10.

Polyploidy can drive rapid adaptation in yeast.

Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, De S, Kishony R, Michor F, Dowell R, Pellman D.

Nature. 2015 Mar 19;519(7543):349-52. doi: 10.1038/nature14187. Epub 2015 Mar 2.

11.

Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.

Sellis D, Kvitek DJ, Dunn B, Sherlock G, Petrov DA.

Genetics. 2016 Jul;203(3):1401-13. doi: 10.1534/genetics.115.185165. Epub 2016 May 18.

12.

Different levels of catabolite repression optimize growth in stable and variable environments.

New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ.

PLoS Biol. 2014 Jan;12(1):e1001764. doi: 10.1371/journal.pbio.1001764. Epub 2014 Jan 14.

13.

The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.

Chiotti KE, Kvitek DJ, Schmidt KH, Koniges G, Schwartz K, Donckels EA, Rosenzweig F, Sherlock G.

Genomics. 2014 Dec;104(6 Pt A):431-7. doi: 10.1016/j.ygeno.2014.10.011. Epub 2014 Nov 1.

14.

High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.

Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ.

PLoS Genet. 2016 Oct 11;12(10):e1006339. doi: 10.1371/journal.pgen.1006339. eCollection 2016 Oct.

15.

Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.

Kvitek DJ, Sherlock G.

PLoS Genet. 2011 Apr;7(4):e1002056. doi: 10.1371/journal.pgen.1002056. Epub 2011 Apr 28.

16.

Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.

Dhar R, Sägesser R, Weikert C, Wagner A.

Mol Biol Evol. 2013 Mar;30(3):573-88. doi: 10.1093/molbev/mss253. Epub 2012 Nov 2.

PMID:
23125229
17.

Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations.

Gray JC, Goddard MR.

BMC Evol Biol. 2012 Mar 30;12:43. doi: 10.1186/1471-2148-12-43.

18.

Genomics of Compensatory Adaptation in Experimental Populations of Aspergillus nidulans.

Dettman JR, Rodrigue N, Schoustra SE, Kassen R.

G3 (Bethesda). 2017 Feb 9;7(2):427-436. doi: 10.1534/g3.116.036152.

19.

Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.

Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM.

Nature. 2013 Aug 29;500(7464):571-4. doi: 10.1038/nature12344. Epub 2013 Jul 21.

20.

Supplemental Content

Support Center