Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 165

1.

Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

Tuan PA, Thwe AA, Kim YB, Kim JK, Kim SJ, Lee S, Chung SO, Park SU.

J Agric Food Chem. 2013 Dec 18;61(50):12356-61. doi: 10.1021/jf4039937. Epub 2013 Dec 10.

PMID:
24274859
2.

Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

Tuan PA, Thwe AA, Kim JK, Kim YB, Lee S, Park SU.

Food Chem. 2013 Dec 15;141(4):3803-12. doi: 10.1016/j.foodchem.2013.06.085. Epub 2013 Jun 28.

PMID:
23993552
3.

Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts.

Thwe AA, Kim YB, Li X, Seo JM, Kim SJ, Suzuki T, Chung SO, Park SU.

J Agric Food Chem. 2014 May 28;62(21):4839-45. doi: 10.1021/jf501335q. Epub 2014 May 14.

PMID:
24793050
4.

Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts.

Seo JM, Arasu MV, Kim YB, Park SU, Kim SJ.

Food Chem. 2015 Jun 15;177:204-13. doi: 10.1016/j.foodchem.2014.12.094. Epub 2015 Jan 2.

PMID:
25660878
5.

Accumulation of phenylpropanoids and correlated gene expression during the development of tartary buckwheat sprouts.

Li X, Thwe AA, Park NI, Suzuki T, Kim SJ, Park SU.

J Agric Food Chem. 2012 Jun 6;60(22):5629-35. doi: 10.1021/jf301449a. Epub 2012 May 23.

PMID:
22587625
6.

Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum moench) buckwheat sprouts.

Liu CL, Chen YS, Yang JH, Chiang BH.

J Agric Food Chem. 2008 Jan 9;56(1):173-8. Epub 2007 Dec 12.

PMID:
18072736
7.

Characterization of genes for a putative hydroxycinnamoyl-coenzyme A quinate transferase and p-coumarate 3'-hydroxylase and chlorogenic acid accumulation in tartary buckwheat.

Kim YB, Thwe AA, Kim YJ, Li X, Kim HH, Park PB, Suzuki T, Kim SJ, Park SU.

J Agric Food Chem. 2013 May 1;61(17):4120-6. doi: 10.1021/jf4000659. Epub 2013 Apr 16.

PMID:
23550515
8.

Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat.

Li X, Kim YB, Kim Y, Zhao S, Kim HH, Chung E, Lee JH, Park SU.

J Plant Physiol. 2013 Dec 15;170(18):1630-6. doi: 10.1016/j.jplph.2013.06.010. Epub 2013 Jul 13.

PMID:
23859559
9.

Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts.

Kim SJ, Zaidul IS, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H.

Food Chem. 2008 Oct 15;110(4):814-20. doi: 10.1016/j.foodchem.2008.02.050. Epub 2008 Feb 23.

PMID:
26047265
10.

Characterization of cDNA encoding resveratrol synthase and accumulation of resveratrol in tartary buckwheat.

Kim YB, Thwe AA, Kim Y, Yeo SK, Lee C, Park SU.

Nat Prod Commun. 2013 Nov;8(11):1571-4.

PMID:
24427944
11.

Sulphur interferes with selenium accumulation in Tartary buckwheat plants.

Golob A, Gadžo D, Stibilj V, Djikić M, Gavrić T, Kreft I, Germ M.

Plant Physiol Biochem. 2016 Nov;108:32-36. doi: 10.1016/j.plaphy.2016.07.001. Epub 2016 Jul 4.

PMID:
27404132
12.

Characterization of Three Glucosyltransferase Genes in Tartary Buckwheat and Their Expression after Cold Stress.

Zhou J, Li CL, Gao F, Luo XP, Li QQ, Zhao HX, Yao HP, Chen H, Wang AH, Wu Q.

J Agric Food Chem. 2016 Sep 21;64(37):6930-8. doi: 10.1021/acs.jafc.6b02064. Epub 2016 Sep 7.

PMID:
27571449
13.

Identification and characterization of granule bound starch synthase I (GBSSI) gene of tartary buckwheat (Fagopyrum tataricum Gaertn.).

Wang X, Feng B, Xu Z, Sestili F, Zhao G, Xiang C, Lafiandra D, Wang T.

Gene. 2014 Jan 25;534(2):229-35. doi: 10.1016/j.gene.2013.10.053. Epub 2013 Nov 6.

PMID:
24211386
14.

Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of tartary buckwheat cultivars.

Thwe AA, Kim JK, Li X, Kim YB, Uddin MR, Kim SJ, Suzuki T, Park NI, Park SU.

PLoS One. 2013 Jun 14;8(6):e65349. doi: 10.1371/journal.pone.0065349. Print 2013. Erratum in: PLoS One. 2013;8(9). doi:10.1371/annotation/e3bbacf5-42a6-4010-869a-1c999804869f.

15.

Effects of yeast polysaccharide on growth and flavonoid accumulation in Fagopyrum tataricum sprout cultures.

Zhao G, Zhao J, Peng L, Zou L, Wang J, Zhong L, Xiang D.

Molecules. 2012 Sep 25;17(10):11335-45.

16.

Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis.

Bai YC, Li CL, Zhang JW, Li SJ, Luo XP, Yao HP, Chen H, Zhao HX, Park SU, Wu Q.

Physiol Plant. 2014 Nov;152(3):431-40. doi: 10.1111/ppl.12199. Epub 2014 May 23.

PMID:
24730512
17.

Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.

Karppinen K, Zoratti L, Sarala M, Carvalho E, Hirsimäki J, Mentula H, Martens S, Häggman H, Jaakola L.

BMC Plant Biol. 2016 Apr 21;16:95. doi: 10.1186/s12870-016-0785-5.

18.

Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout.

Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ.

Food Chem. 2012 Dec 1;135(3):1065-70. doi: 10.1016/j.foodchem.2012.05.068. Epub 2012 May 24.

PMID:
22953825
19.

Identification, isolation and expression analysis of eight stress-related R2R3-MYB genes in tartary buckwheat (Fagopyrum tataricum).

Gao F, Zhao HX, Yao HP, Li CL, Chen H, Wang AH, Park SU, Wu Q.

Plant Cell Rep. 2016 Jun;35(6):1385-96. doi: 10.1007/s00299-016-1971-5. Epub 2016 Mar 28.

PMID:
27021383
20.

Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin.

Fabjan N, Rode J, Kosir IJ, Wang Z, Zhang Z, Kreft I.

J Agric Food Chem. 2003 Oct 22;51(22):6452-5.

PMID:
14558761

Supplemental Content

Support Center