Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Modulation of quinone PCET reaction by Ca2+ ion captured by calix[4]quinone in water.

Kim YR, Kim RS, Kang SK, Choi MG, Kim HY, Cho D, Lee JY, Chang SK, Chung TD.

J Am Chem Soc. 2013 Dec 18;135(50):18957-67. doi: 10.1021/ja410406e. Epub 2013 Dec 5. Erratum in: J Am Chem Soc. 2014 May 7;136(18):6775.

PMID:
24274689
2.

Proton-coupled electron transfer with photoexcited metal complexes.

Wenger OS.

Acc Chem Res. 2013 Jul 16;46(7):1517-26. doi: 10.1021/ar300289x. Epub 2013 Feb 13.

PMID:
23402212
3.
4.

Self-assembled monolayer of a redox-active calix[4]arene: voltammetric recognition of the Ba2+ ion in aqueous media.

Chung TD, Park J, Kim J, Lim H, Choi MJ, Kim JR, Chang SK, Kim H.

Anal Chem. 2001 Aug 15;73(16):3975-80.

PMID:
11534725
5.
6.

Phospholipid-linked quinones-mediated electron transfer on an electrode modified with lipid bilayers.

Suemori Y, Nagata M, Kondo M, Ishigure S, Dewa T, Ohtsuka T, Nango M.

Colloids Surf B Biointerfaces. 2008 Jan 15;61(1):106-12. Epub 2007 Jun 28.

PMID:
17681456
7.
8.
9.

Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems.

Robertson DE, Prince RC, Bowyer JR, Matsuura K, Dutton PL, Ohnishi T.

J Biol Chem. 1984 Feb 10;259(3):1758-63.

10.

Proton transfer dynamics dictate quinone speciation at lipid-modified electrodes.

Tse EC, Barile CJ, Li Y, Zimmerman SC, Hosseini A, Gewirth AA.

Phys Chem Chem Phys. 2017 Mar 8;19(10):7086-7093. doi: 10.1039/c6cp07586j.

PMID:
28225090
12.

Calix[4]quinones derived from double calix[4]arenes: synthesis, complexation, and electrochemical properties toward alkali metal ions.

Kerdpaiboon N, Tomapatanaget B, Chailapakul O, Tuntulani T.

J Org Chem. 2005 Jun 10;70(12):4797-804.

PMID:
15932320
13.
14.

Proton uptake by bacterial reaction centers: the protein complex responds in a similar manner to the reduction of either quinone acceptor.

Miksovska J, Schiffer M, Hanson DK, Sebban P.

Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14348-53.

15.

A New Family of Indoaniline-Derived Calix[4]arenes: Synthesis and Optical Recognition Properties as a Chromogenic Receptor(1).

Kubo Y, Tokita S, Kojima Y, Osano YT, Matsuzaki T.

J Org Chem. 1996 May 31;61(11):3758-3765.

PMID:
11667226
16.

Hydrogen-bond relays in concerted proton-electron transfers.

Bonin J, Costentin C, Robert M, Savéant JM, Tard C.

Acc Chem Res. 2012 Mar 20;45(3):372-81. doi: 10.1021/ar200132f. Epub 2011 Oct 26. Erratum in: Acc Chem Res. 2013 Aug 20;46(8):1910.

PMID:
22029773
17.

Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols.

Sjödin M, Irebo T, Utas JE, Lind J, Merényi G, Akermark B, Hammarström L.

J Am Chem Soc. 2006 Oct 11;128(40):13076-83.

PMID:
17017787
18.

Electrochemically controlled hydrogen bonding. o-Quinones as simple redox-dependent receptors for arylureas.

Ge Y, Miller L, Ouimet T, Smith DK.

J Org Chem. 2000 Dec 29;65(26):8831-8.

PMID:
11149823
19.

Spanning four mechanistic regions of intramolecular proton-coupled electron transfer in a Ru(bpy)3(2+)-tyrosine complex.

Irebo T, Zhang MT, Markle TF, Scott AM, Hammarström L.

J Am Chem Soc. 2012 Oct 3;134(39):16247-54. doi: 10.1021/ja3053859. Epub 2012 Sep 24.

PMID:
22909089
20.

Molecular mechanical devices based on quinone-pyrrole and quinone-indole dyads: a computational study.

Kacprzak S, Kaupp M.

J Phys Chem B. 2006 Apr 20;110(15):8158-65.

PMID:
16610919

Supplemental Content

Support Center