Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

Shiroma S, Jayakody LN, Horie K, Okamoto K, Kitagaki H.

Appl Environ Microbiol. 2014 Feb;80(3):1002-12. doi: 10.1128/AEM.03130-13. Epub 2013 Nov 22.

2.

Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

Wu H, Watanabe T, Araki Y, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jun;107(6):636-40. doi: 10.1016/j.jbiosc.2009.01.014.

PMID:
19447341
3.

Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p.

Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2011 Feb;77(3):934-41. doi: 10.1128/AEM.01869-10. Epub 2010 Dec 3.

4.

Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2011 Jul;112(1):44-8. doi: 10.1016/j.jbiosc.2011.03.001. Epub 2011 Apr 2.

PMID:
21459038
5.

A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.

Watanabe D, Araki Y, Zhou Y, Maeya N, Akao T, Shimoi H.

Appl Environ Microbiol. 2012 Jun;78(11):4008-16. doi: 10.1128/AEM.00165-12. Epub 2012 Mar 23.

6.

Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

Noguchi C, Watanabe D, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2012 Jan;78(2):385-92. doi: 10.1128/AEM.06341-11. Epub 2011 Nov 4.

7.

Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake.

Izawa S, Takemura R, Ikeda K, Fukuda K, Wakai Y, Inoue Y.

Appl Microbiol Biotechnol. 2005 Nov;69(1):86-91. Epub 2005 Oct 20.

PMID:
15803312
8.

Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.

Kitagaki H.

Biotechnol Appl Biochem. 2009 May 29;53(Pt 3):145-53. doi: 10.1042/BA20090032. Review.

PMID:
19476438
9.

Global gene expression analysis of yeast cells during sake brewing.

Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H.

Appl Environ Microbiol. 2006 Nov;72(11):7353-8. Epub 2006 Sep 22.

10.

Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.

Watanabe D, Nogami S, Ohya Y, Kanno Y, Zhou Y, Akao T, Shimoi H.

J Biosci Bioeng. 2011 Dec;112(6):577-82. doi: 10.1016/j.jbiosc.2011.08.010. Epub 2011 Sep 8.

PMID:
21906996
11.

Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae.

Takagi H, Takaoka M, Kawaguchi A, Kubo Y.

Appl Environ Microbiol. 2005 Dec;71(12):8656-62.

12.

Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

Oomuro M, Kato T, Zhou Y, Watanabe D, Motoyama Y, Yamagishi H, Akao T, Aizawa M.

J Biosci Bioeng. 2016 Nov;122(5):577-582. doi: 10.1016/j.jbiosc.2016.04.007. Epub 2016 May 19.

PMID:
27212268
13.

Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H.

Biosci Biotechnol Biochem. 2013;77(11):2255-62. Epub 2013 Nov 7.

14.

Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.

Watanabe M, Watanabe D, Akao T, Shimoi H.

J Biosci Bioeng. 2009 May;107(5):516-8. doi: 10.1016/j.jbiosc.2009.01.006.

PMID:
19393550
15.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
16.

QTL mapping of sake brewing characteristics of yeast.

Katou T, Namise M, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2009 Apr;107(4):383-93. doi: 10.1016/j.jbiosc.2008.12.014.

PMID:
19332297
17.

Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

Zhang K, Tong M, Gao K, Di Y, Wang P, Zhang C, Wu X, Zheng D.

J Ind Microbiol Biotechnol. 2015 Feb;42(2):207-18. doi: 10.1007/s10295-014-1556-7. Epub 2014 Dec 5.

PMID:
25475753
18.

Mitophagy in yeast: Molecular mechanisms and physiological role.

Kanki T, Furukawa K, Yamashita S.

Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2756-65. doi: 10.1016/j.bbamcr.2015.01.005. Epub 2015 Jan 17. Review.

19.

Dynamical analysis of yeast protein interaction network during the sake brewing process.

Mirzarezaee M, Sadeghi M, Araabi BN.

J Microbiol. 2011 Dec;49(6):965-73. doi: 10.1007/s12275-011-1194-y. Epub 2011 Dec 28.

PMID:
22203560
20.

Casein kinase 2 is essential for mitophagy.

Kanki T, Kurihara Y, Jin X, Goda T, Ono Y, Aihara M, Hirota Y, Saigusa T, Aoki Y, Uchiumi T, Kang D.

EMBO Rep. 2013 Sep;14(9):788-94. doi: 10.1038/embor.2013.114. Epub 2013 Jul 30.

Supplemental Content

Support Center