Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Experimental and finite element analysis of strains induced by axial tibial compression in young-adult and old female C57Bl/6 mice.

Patel TK, Brodt MD, Silva MJ.

J Biomech. 2014 Jan 22;47(2):451-7. doi: 10.1016/j.jbiomech.2013.10.052.

2.

Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.

Yang H, Butz KD, Duffy D, Niebur GL, Nauman EA, Main RP.

Bone. 2014 Sep;66:131-9. doi: 10.1016/j.bone.2014.05.019.

PMID:
24925445
3.

Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging.

Lynch ME, Main RP, Xu Q, Schmicker TL, Schaffler MB, Wright TM, van der Meulen MC.

Bone. 2011 Sep;49(3):439-46. doi: 10.1016/j.bone.2011.05.017.

4.

Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study.

Razi H, Birkhold AI, Zaslansky P, Weinkamer R, Duda GN, Willie BM, Checa S.

Acta Biomater. 2015 Feb;13:301-10. doi: 10.1016/j.actbio.2014.11.021.

PMID:
25463494
5.

Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.

Holguin N, Brodt MD, Sanchez ME, Silva MJ.

Bone. 2014 Aug;65:83-91. doi: 10.1016/j.bone.2014.05.006.

6.

Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice.

Silva MJ, Brodt MD, Hucker WJ.

Anat Rec A Discov Mol Cell Evol Biol. 2005 Apr;283(2):380-90.

7.

Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.

Weatherholt AM, Fuchs RK, Warden SJ.

Bone. 2013 Jan;52(1):372-9. doi: 10.1016/j.bone.2012.10.026.

8.

Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.

Berman AG, Clauser CA, Wunderlin C, Hammond MA, Wallace JM.

PLoS One. 2015 Jun 26;10(6):e0130504. doi: 10.1371/journal.pone.0130504.

9.

Adaptation of tibial structure and strength to axial compression depends on loading history in both C57BL/6 and BALB/c mice.

Holguin N, Brodt MD, Sanchez ME, Kotiya AA, Silva MJ.

Calcif Tissue Int. 2013 Sep;93(3):211-21. doi: 10.1007/s00223-013-9744-4.

11.

Diaphyseal bone formation in murine tibiae in response to knee loading.

Zhang P, Tanaka SM, Jiang H, Su M, Yokota H.

J Appl Physiol (1985). 2006 May;100(5):1452-9.

12.
13.
14.

Load-induced changes in bone stiffness and cancellous and cortical bone mass following tibial compression diminish with age in female mice.

Main RP, Lynch ME, van der Meulen MC.

J Exp Biol. 2014 May 15;217(Pt 10):1775-83. doi: 10.1242/jeb.085522.

15.

Site specific bone adaptation response to mechanical loading.

Kuruvilla SJ, Fox SD, Cullen DM, Akhter MP.

J Musculoskelet Neuronal Interact. 2008 Jan-Mar;8(1):71-8.

17.

Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.

Carriero A, Abela L, Pitsillides AA, Shefelbine SJ.

J Biomech. 2014 Jul 18;47(10):2490-7. doi: 10.1016/j.jbiomech.2014.03.035.

18.

Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered.

Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS.

Osteoporos Int. 2012 Apr;23(4):1225-34. doi: 10.1007/s00198-011-1656-4.

19.

Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone.

Christiansen BA, Bayly PV, Silva MJ.

J Biomech Eng. 2008 Aug;130(4):044502. doi: 10.1115/1.2917435.

20.

In vivo axial loading of the mouse tibia.

Melville KM, Robling AG, van der Meulen MC.

Methods Mol Biol. 2015;1226:99-115. doi: 10.1007/978-1-4939-1619-1_9.

Items per page

Supplemental Content

Support Center