Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Catalysis-enhancement via rotary fluctuation of F1-ATPase.

Watanabe R, Hayashi K, Ueno H, Noji H.

Biophys J. 2013 Nov 19;105(10):2385-91. doi: 10.1016/j.bpj.2013.09.050.

2.

Mechanical modulation of catalytic power on F1-ATPase.

Watanabe R, Okuno D, Sakakihara S, Shimabukuro K, Iino R, Yoshida M, Noji H.

Nat Chem Biol. 2011 Nov 20;8(1):86-92. doi: 10.1038/nchembio.715.

PMID:
22101603
3.

ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase.

Li CB, Ueno H, Watanabe R, Noji H, Komatsuzaki T.

Nat Commun. 2015 Dec 17;6:10223. doi: 10.1038/ncomms10223.

4.

Thermodynamic analysis of F1-ATPase rotary catalysis using high-speed imaging.

Watanabe R, Minagawa Y, Noji H.

Protein Sci. 2014 Dec;23(12):1773-9. doi: 10.1002/pro.2559.

5.
6.

Determination of the partial reactions of rotational catalysis in F1-ATPase.

Scanlon JA, Al-Shawi MK, Le NP, Nakamoto RK.

Biochemistry. 2007 Jul 31;46(30):8785-97.

PMID:
17620014
7.

Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.

Iko Y, Tabata KV, Sakakihara S, Nakashima T, Noji H.

FEBS Lett. 2009 Oct 6;583(19):3187-91. doi: 10.1016/j.febslet.2009.08.042.

8.

A model of stepping kinetics for rotary enzymes. Application to the F1-ATPase.

Goldstein BN, Aksirov AM, Zakrjevskaya DT.

Biosystems. 2011 Apr;104(1):9-13. doi: 10.1016/j.biosystems.2010.12.007.

PMID:
21195126
9.
10.

Chemomechanical coupling of human mitochondrial F1-ATPase motor.

Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M.

Nat Chem Biol. 2014 Nov;10(11):930-6. doi: 10.1038/nchembio.1635.

PMID:
25242551
11.

[Irregular activity oscillations of rotary molecular motor. A simple kinetic model of F1-ATPase].

Gol'dshteĭn BN, Aksirov AM, Zakrzhevskaia DT.

Mol Biol (Mosk). 2012 Sep-Oct;46(5):792-8. Russian.

PMID:
23156679
12.

Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.

Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M.

Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14731-6.

13.

Phosphate release in F1-ATPase catalytic cycle follows ADP release.

Watanabe R, Iino R, Noji H.

Nat Chem Biol. 2010 Nov;6(11):814-20. doi: 10.1038/nchembio.443.

PMID:
20871600
14.

Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation.

Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K Jr.

Nat Struct Mol Biol. 2004 Feb;11(2):142-8.

PMID:
14730353
15.

Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

Yukawa A, Watanabe R, Noji H.

Biochem Biophys Res Commun. 2015 Mar 13;458(3):515-9. doi: 10.1016/j.bbrc.2015.01.146.

PMID:
25681765
16.

Phosphate release coupled to rotary motion of F1-ATPase.

Okazaki K, Hummer G.

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110.

17.

Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism.

Nam K, Pu J, Karplus M.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17851-6. doi: 10.1073/pnas.1419486111.

18.

Torque generation mechanism of F1-ATPase upon NTP binding.

Arai HC, Yukawa A, Iwatate RJ, Kamiya M, Watanabe R, Urano Y, Noji H.

Biophys J. 2014 Jul 1;107(1):156-64. doi: 10.1016/j.bpj.2014.05.016.

19.

Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.

Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H.

Nature. 2001 Apr 19;410(6831):898-904.

PMID:
11309608
20.

A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase.

Gao YQ, Yang W, Marcus RA, Karplus M.

Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11339-44.

Items per page

Supplemental Content

Support Center