Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 206

1.

In situ synthesis and cell performance of a Si/C core-shell/ball-milled graphite composite for lithium ion batteries.

Jung DW, Kim KH, Lee J, Kong BS, Oh ES.

J Nanosci Nanotechnol. 2013 Dec;13(12):7855-9.

PMID:
24266152
2.

Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

Jia H, Stock C, Kloepsch R, He X, Badillo JP, Fromm O, Vortmann B, Winter M, Placke T.

ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1508-15. doi: 10.1021/am506486w. Epub 2015 Jan 17.

PMID:
25574763
3.

Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.

Yao Y, Huo K, Hu L, Liu N, Cha JJ, McDowell MT, Chu PK, Cui Y.

ACS Nano. 2011 Oct 25;5(10):8346-51. doi: 10.1021/nn2033693. Epub 2011 Oct 11.

PMID:
21974912
4.

Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries.

Farooq U, Choi JH, Kim D, Pervez SA, Yaqub A, Hwang MJ, Lee YJ, Lee WJ, Choi HY, Lee SH, You JH, Ha CW, Doh CH.

J Nanosci Nanotechnol. 2014 Dec;14(12):9340-5.

PMID:
25971062
5.

SnO2 nanoparticles distributed on multi-walled carbon nanotubes and ball-milled graphite as anode materials of lithium ion batteries.

Jung DW, Jeong JH, Kim KH, Kong BS, Oh ES.

J Nanosci Nanotechnol. 2012 Jul;12(7):5435-9.

PMID:
22966585
6.

Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

Wen Y, Zhu Y, Langrock A, Manivannan A, Ehrman SH, Wang C.

Small. 2013 Aug 26;9(16):2810-6. doi: 10.1002/smll.201202512. Epub 2013 Feb 26.

PMID:
23440956
7.

Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

Wang J, Bao W, Ma L, Tan G, Su Y, Chen S, Wu F, Lu J, Amine K.

ChemSusChem. 2015 Dec 7;8(23):4073-80. doi: 10.1002/cssc.201500674. Epub 2015 Nov 9.

PMID:
26548901
8.

Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes.

Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff GL, Zhang JG.

Nano Lett. 2012 Aug 8;12(8):4124-30. doi: 10.1021/nl301657y. Epub 2012 Jul 18.

PMID:
22800407
9.

Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

Pandey GP, Klankowski SA, Li Y, Sun XS, Wu J, Rojeski RA, Li J.

ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20909-18. doi: 10.1021/acsami.5b06444. Epub 2015 Sep 10.

PMID:
26325385
10.

Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.

Chen Y, Qian J, Cao Y, Yang H, Ai X.

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3753-8. doi: 10.1021/am300952b. Epub 2012 Jul 16.

PMID:
22757774
11.

Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

Li W, Tang Y, Kang W, Zhang Z, Yang X, Zhu Y, Zhang W, Lee CS.

Small. 2015 Mar 18;11(11):1345-51. doi: 10.1002/smll.201402072. Epub 2014 Oct 27.

PMID:
25346141
12.

Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries.

Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS.

ACS Appl Mater Interfaces. 2016 May 18;8(19):12109-17. doi: 10.1021/acsami.5b11628. Epub 2016 May 9.

PMID:
27112916
13.

In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.

Wang CM, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik L, Zhang JG, Howe J, Burton DJ, Liu Z, Xiao X, Thevuthasan S, Baer DR.

Nano Lett. 2012 Mar 14;12(3):1624-32. doi: 10.1021/nl204559u. Epub 2012 Mar 6.

PMID:
22385150
14.

Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.

Tao H, Fan LZ, Song WL, Wu M, He X, Qu X.

Nanoscale. 2014 Mar 21;6(6):3138-42. doi: 10.1039/c3nr03090c. Epub 2014 Feb 4.

PMID:
24496138
15.

Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW.

Nano Lett. 2012 Feb 8;12(2):802-7. doi: 10.1021/nl203817r. Epub 2012 Jan 12.

PMID:
22206272
16.

Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

Cui LF, Ruffo R, Chan CK, Peng H, Cui Y.

Nano Lett. 2009 Jan;9(1):491-5. doi: 10.1021/nl8036323.

PMID:
19105648
17.

One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries.

Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Jouanneau Si Larbi S, Herlin-Boime N, Reynaud C.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6637-44. doi: 10.1021/am5089742. Epub 2015 Mar 19.

PMID:
25761636
18.

Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.

Cui LF, Yang Y, Hsu CM, Cui Y.

Nano Lett. 2009 Sep;9(9):3370-4. doi: 10.1021/nl901670t.

PMID:
19655765
19.

Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.

Wang W, Kumta PN.

ACS Nano. 2010 Apr 27;4(4):2233-41. doi: 10.1021/nn901632g.

PMID:
20364846
20.

Electrochemical properties of CoFe3Sb12 as potential anode material for lithium-ion batteries.

Zhao XB, Zhong YD, Cao GS.

J Zhejiang Univ Sci. 2004 Apr;5(4):418-21.

PMID:
14994430

Supplemental Content

Support Center