Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation.

Lewis SR, Hedman CJ, Ziegler T, Ricke WA, Jorgensen JS.

Endocrinology. 2014 Feb;155(2):358-69. doi: 10.1210/en.2013-1583. Epub 2013 Nov 21.


De novo steroid biosynthesis in human prostate cell lines and biopsies.

Sakai M, Martinez-Arguelles DB, Aprikian AG, Magliocco AM, Papadopoulos V.

Prostate. 2016 May;76(6):575-87. doi: 10.1002/pros.23146. Epub 2016 Feb 4.


Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

Kumagai J, Hofland J, Erkens-Schulze S, Dits NF, Steenbergen J, Jenster G, Homma Y, de Jong FH, van Weerden WM.

Prostate. 2013 Nov;73(15):1636-50. doi: 10.1002/pros.22655. Epub 2013 Sep 2.


TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.

Takayama K, Horie-Inoue K, Suzuki T, Urano T, Ikeda K, Fujimura T, Takahashi S, Homma Y, Ouchi Y, Inoue S.

Mol Endocrinol. 2012 May;26(5):748-61. doi: 10.1210/me.2011-1242. Epub 2012 Mar 28.


Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.

Hagberg Thulin M, Nilsson ME, Thulin P, Céraline J, Ohlsson C, Damber JE, Welén K.

Mol Cell Endocrinol. 2016 Feb 15;422:182-191. doi: 10.1016/j.mce.2015.11.013. Epub 2015 Nov 14.


Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model.

Leon CG, Locke JA, Adomat HH, Etinger SL, Twiddy AL, Neumann RD, Nelson CC, Guns ES, Wasan KM.

Prostate. 2010 Mar 1;70(4):390-400. doi: 10.1002/pros.21072.


Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors.

Mitsiades N, Sung CC, Schultz N, Danila DC, He B, Eedunuri VK, Fleisher M, Sander C, Sawyers CL, Scher HI.

Cancer Res. 2012 Dec 1;72(23):6142-52. doi: 10.1158/0008-5472.CAN-12-1335. Epub 2012 Sep 12.


Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts.

Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Guns ES.

J Steroid Biochem Mol Biol. 2009 Jul;115(3-5):126-36. doi: 10.1016/j.jsbmb.2009.03.011. Epub 2009 Apr 5.


Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth.

Yepuru M, Wu Z, Kulkarni A, Yin F, Barrett CM, Kim J, Steiner MS, Miller DD, Dalton JT, Narayanan R.

Clin Cancer Res. 2013 Oct 15;19(20):5613-25. doi: 10.1158/1078-0432.CCR-13-1151. Epub 2013 Aug 30.


Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer.

Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, Ettinger SL, Gleave ME, Nelson CC.

Cancer Res. 2008 Aug 1;68(15):6407-15. doi: 10.1158/0008-5472.CAN-07-5997.


Androgen receptors in hormone-dependent and castration-resistant prostate cancer.

Shafi AA, Yen AE, Weigel NL.

Pharmacol Ther. 2013 Dec;140(3):223-38. doi: 10.1016/j.pharmthera.2013.07.003. Epub 2013 Jul 13. Review.


Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors.

Mostaghel EA, Solomon KR, Pelton K, Freeman MR, Montgomery RB.

PLoS One. 2012;7(1):e30062. doi: 10.1371/journal.pone.0030062. Epub 2012 Jan 18.


Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways.

Vis AN, Schröder FH.

BJU Int. 2009 Aug;104(4):438-48. doi: 10.1111/j.1464-410X.2009.08695.x. Epub 2009 Jun 24. Review.


Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer.

Hofland J, van Weerden WM, Dits NF, Steenbergen J, van Leenders GJ, Jenster G, Schröder FH, de Jong FH.

Cancer Res. 2010 Feb 1;70(3):1256-64. doi: 10.1158/0008-5472.CAN-09-2092. Epub 2010 Jan 19.


Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.

Seiler D, Zheng J, Liu G, Wang S, Yamashiro J, Reiter RE, Huang J, Zeng G.

Prostate. 2013 Sep;73(13):1378-90. doi: 10.1002/pros.22685. Epub 2013 May 31.


Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.

Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, Tom W, Paner GP, Szmulewitz RZ, Vander Griend DJ.

PLoS One. 2013;8(1):e53701. doi: 10.1371/journal.pone.0053701. Epub 2013 Jan 11.


Insulin increases de novo steroidogenesis in prostate cancer cells.

Lubik AA, Gunter JH, Hendy SC, Locke JA, Adomat HH, Thompson V, Herington A, Gleave ME, Pollak M, Nelson CC.

Cancer Res. 2011 Sep 1;71(17):5754-64. doi: 10.1158/0008-5472.CAN-10-2470. Epub 2011 Jul 11.


Vav3 enhances androgen receptor splice variant activity and is critical for castration-resistant prostate cancer growth and survival.

Peacock SO, Fahrenholtz CD, Burnstein KL.

Mol Endocrinol. 2012 Dec;26(12):1967-79. doi: 10.1210/me.2012-1165. Epub 2012 Sep 28.


Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance.

Locke JA, Guns ES, Lehman ML, Ettinger S, Zoubeidi A, Lubik A, Margiotti K, Fazli L, Adomat H, Wasan KM, Gleave ME, Nelson CC.

Prostate. 2010 Feb 15;70(3):239-51. doi: 10.1002/pros.21057.


The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer.

Tien JC, Liu Z, Liao L, Wang F, Xu Y, Wu YL, Zhou N, Ittmann M, Xu J.

Cancer Res. 2013 Jul 1;73(13):3997-4008. doi: 10.1158/0008-5472.CAN-12-3929. Epub 2013 May 6.

Supplemental Content

Support Center