Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Field evidence of colonisation by Holm Oak, at the northern margin of its distribution range, during the Anthropocene period.

Delzon S, Urli M, Samalens JC, Lamy JB, Lischke H, Sin F, Zimmermann NE, Porté AJ.

PLoS One. 2013 Nov 18;8(11):e80443. doi: 10.1371/journal.pone.0080443. eCollection 2013.

2.

Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest.

Guàrdia M, Fernàndez J, Elena G, Fleck I.

Tree Physiol. 2012 Jul;32(7):829-38. doi: 10.1093/treephys/tps035. Epub 2012 Apr 26.

PMID:
22539636
3.

Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study.

Joët T, Ourcival JM, Capelli M, Dussert S, Morin X.

Ann Bot. 2016 Jan;117(1):165-76. doi: 10.1093/aob/mcv139. Epub 2015 Sep 29.

4.

Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.

Barbeta A, Ogaya R, Peñuelas J.

Glob Chang Biol. 2013 Oct;19(10):3133-44. doi: 10.1111/gcb.12269. Epub 2013 Aug 8.

PMID:
23712619
5.

Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada.

Leithead MD, Anand M, Silva LC.

Oecologia. 2010 Dec;164(4):1095-106. doi: 10.1007/s00442-010-1769-z. Epub 2010 Sep 22.

PMID:
20859751
6.

Foliar CO₂ in a holm oak forest subjected to 15 years of climate change simulation.

Ogaya R, Llusià J, Barbeta A, Asensio D, Liu D, Alessio GA, Peñuelas J.

Plant Sci. 2014 Sep;226:101-7. doi: 10.1016/j.plantsci.2014.06.010. Epub 2014 Jun 20.

PMID:
25113455
7.

Ecological significance of seed desiccation sensitivity in Quercus ilex.

Joët T, Ourcival JM, Dussert S.

Ann Bot. 2013 Apr;111(4):693-701. doi: 10.1093/aob/mct025. Epub 2013 Feb 6.

8.

Mountain landscapes offer few opportunities for high-elevation tree species migration.

Bell DM, Bradford JB, Lauenroth WK.

Glob Chang Biol. 2014 May;20(5):1441-51. doi: 10.1111/gcb.12504. Epub 2014 Feb 24.

PMID:
24353188
9.

A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling.

Dalmaris E, Ramalho CE, Poot P, Veneklaas EJ, Byrne M.

Ann Bot. 2015 Nov;116(6):941-52. doi: 10.1093/aob/mcv044. Epub 2015 Apr 7.

10.

Using a down-scaled bioclimate envelope model to determine long-term temporal connectivity of Garry oak (Quercus garryana) habitat in western North America: implications for protected area planning.

Pellatt MG, Goring SJ, Bodtker KM, Cannon AJ.

Environ Manage. 2012 Apr;49(4):802-15. doi: 10.1007/s00267-012-9815-8. Epub 2012 Feb 19.

PMID:
22350431
11.

Community structures of N2 -fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought.

Rico L, Ogaya R, Terradas J, Peñuelas J.

Plant Biol (Stuttg). 2014 May;16(3):586-93. doi: 10.1111/plb.12082. Epub 2013 Aug 16.

PMID:
23952768
12.

A new model to simulate climate-change impacts on forest succession for local land management.

Yospin GI, Bridgham SD, Neilson RP, Bolte JP, Bachelet DM, Gould PJ, Harrington CA, Kertis JA, Evers C, Johnson BR.

Ecol Appl. 2015 Jan;25(1):226-42.

PMID:
26255370
13.

Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.

Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M.

Glob Chang Biol. 2013 Jan;19(1):229-40. doi: 10.1111/gcb.12038. Epub 2012 Nov 1.

PMID:
23504734
14.

Is climate an important driver of post-European vegetation change in the Eastern United States?

Nowacki GJ, Abrams MD.

Glob Chang Biol. 2015 Jan;21(1):314-34. doi: 10.1111/gcb.12663. Epub 2014 Jul 25.

PMID:
24953341
15.

Regime shifts and weakened environmental gradients in open oak and pine ecosystems.

Hanberry BB, Dey DC, He HS.

PLoS One. 2012;7(7):e41337. doi: 10.1371/journal.pone.0041337. Epub 2012 Jul 24.

16.

Past and ongoing shifts in Joshua tree distribution support future modeled range contraction.

Cole KL, Ironside K, Eischeid J, Garfin G, Duffy PB, Toney C.

Ecol Appl. 2011 Jan;21(1):137-49.

PMID:
21516893
17.

The roles of dispersal, fecundity, and predation in the population persistence of an oak (Quercus engelmannii) under global change.

Conlisk E, Lawson D, Syphard AD, Franklin J, Flint L, Flint A, Regan HM.

PLoS One. 2012;7(5):e36391. doi: 10.1371/journal.pone.0036391. Epub 2012 May 18. Erratum in: PLoS One. 2014;9(1). doi:10.1371/annotation/819da56b-1c8f-445f-80fc-e8d741dc2262.

18.

Different intra- and interspecific facilitation mechanisms between two Mediterranean trees under a climate change scenario.

Gimeno TE, Escudero A, Valladares F.

Oecologia. 2015 Jan;177(1):159-69. doi: 10.1007/s00442-014-3115-3. Epub 2014 Oct 30.

PMID:
25354713
19.

Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

Shestakova TA, Aguilera M, Ferrio JP, Gutiérrez E, Voltas J.

Tree Physiol. 2014 Aug;34(8):819-38. doi: 10.1093/treephys/tpu037. Epub 2014 May 28.

PMID:
24870366
20.

Thinning effects on carbon allocation to fine roots in a Quercus ilex forest.

López BC, Sabate S, Gracia CA.

Tree Physiol. 2003 Dec;23(17):1217-24.

PMID:
14597431

Supplemental Content

Support Center