Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

A generalized, likelihood-free method for posterior estimation.

Turner BM, Sederberg PB.

Psychon Bull Rev. 2014 Apr;21(2):227-50. doi: 10.3758/s13423-013-0530-0. Review.

2.

Bayesian inference with Stan: A tutorial on adding custom distributions.

Annis J, Miller BJ, Palmeri TJ.

Behav Res Methods. 2017 Jun;49(3):863-886. doi: 10.3758/s13428-016-0746-9.

PMID:
27287444
3.

Hierarchical approximate Bayesian computation.

Turner BM, Van Zandt T.

Psychometrika. 2014 Apr;79(2):185-209. doi: 10.1007/s11336-013-9381-x. Epub 2013 Dec 3.

4.

Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice.

Scheibehenne B, Pachur T.

Psychon Bull Rev. 2015 Apr;22(2):391-407. doi: 10.3758/s13423-014-0684-4. Review.

PMID:
25134469
5.

Bayesian model adequacy and choice in phylogenetics.

Bollback JP.

Mol Biol Evol. 2002 Jul;19(7):1171-80.

PMID:
12082136
7.

Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time.

Jones M, Dzhafarov EN.

Psychol Rev. 2014 Jan;121(1):1-32. doi: 10.1037/a0034190. Epub 2013 Sep 30. Erratum in: Psychol Rev. 2014 Jan;121(1):150.

PMID:
24079307
8.

An accumulator model for responses and response times in tests based on the proportional hazards model.

Ranger J, Kuhn JT.

Br J Math Stat Psychol. 2014 Nov;67(3):388-407. doi: 10.1111/bmsp.12025. Epub 2013 Sep 2.

PMID:
23992122
10.

Likelihood-based parameter estimation and comparison of dynamical cognitive models.

Schütt HH, Rothkegel LOM, Trukenbrod HA, Reich S, Wichmann FA, Engbert R.

Psychol Rev. 2017 Jul;124(4):505-524. doi: 10.1037/rev0000068. Epub 2017 Apr 27.

PMID:
28447811
11.

Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions.

Chaudhuri SE, Merfeld DM.

Exp Brain Res. 2013 Mar;225(1):133-46. doi: 10.1007/s00221-012-3354-7. Epub 2012 Dec 19.

12.

Modeling response signal and response time data.

Ratcliff R.

Cogn Psychol. 2006 Nov;53(3):195-237. Epub 2006 Aug 4.

13.

Bayesian parametric estimation of stop-signal reaction time distributions.

Matzke D, Dolan CV, Logan GD, Brown SD, Wagenmakers EJ.

J Exp Psychol Gen. 2013 Nov;142(4):1047-73. doi: 10.1037/a0030543. Epub 2012 Nov 19.

PMID:
23163766
14.

HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

Wiecki TV, Sofer I, Frank MJ.

Front Neuroinform. 2013 Aug 2;7:14. doi: 10.3389/fninf.2013.00014. eCollection 2013.

15.
16.
17.

Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.

Wilkinson RD.

Stat Appl Genet Mol Biol. 2013 May 6;12(2):129-41. doi: 10.1515/sagmb-2013-0010.

PMID:
23652634
18.

Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.

Batterman S, Su FC, Li S, Mukherjee B, Jia C; HEI Health Review Committee.

Res Rep Health Eff Inst. 2014 Jun;(181):3-63.

19.

Assessing the informational value of parameter estimates in cognitive models.

Verguts T, Storms G.

Behav Res Methods Instrum Comput. 2004 Feb;36(1):1-10.

PMID:
15190694
20.

Bayesian statistical approaches to evaluating cognitive models.

Annis J, Palmeri TJ.

Wiley Interdiscip Rev Cogn Sci. 2017 Nov 28. doi: 10.1002/wcs.1458. [Epub ahead of print] Review.

PMID:
29193776

Supplemental Content

Support Center