Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 165

1.

Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions.

Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M.

J Exp Bot. 2014 Jan;65(1):261-73. doi: 10.1093/jxb/ert371. Epub 2013 Nov 19.

2.

Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma.

Yamauchi T, Abe F, Kawaguchi K, Oyanagi A, Nakazono M.

Plant Signal Behav. 2014;9(4):e28506. doi: 10.4161/psb.28506.

PMID:
25764431
3.
4.

Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.

Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M.

Ann Bot. 2015 May;115(6):879-94. doi: 10.1093/aob/mcv018. Epub 2015 Apr 8.

5.

Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.

Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M.

Plant Physiol. 2015 Sep;169(1):180-93. doi: 10.1104/pp.15.00106. Epub 2015 Jun 2.

6.

Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp.

Yin D, Chen S, Chen F, Jiang J.

Mol Biol Rep. 2013 Jul;40(7):4581-90. doi: 10.1007/s11033-013-2550-2. Epub 2013 May 5.

PMID:
23645034
7.

Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

Yu Y, Jin C, Sun C, Wang J, Ye Y, Zhou W, Lu L, Lin X.

Sci Rep. 2016 Jan 8;6:18888. doi: 10.1038/srep18888.

8.

Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.

Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C.

Ann Bot. 2011 Jun;107(8):1335-43. doi: 10.1093/aob/mcr086. Epub 2011 Apr 12.

9.

Characterization of a wheat pathogenesis-related protein, TaBWPR-1.2, in seminal roots in response to waterlogging stress.

Haque ME, Abe F, Mori M, Oyanagi A, Komatsu S, Kawaguchi K.

J Plant Physiol. 2014 May 1;171(8):602-9. doi: 10.1016/j.jplph.2013.12.003. Epub 2014 Mar 20.

PMID:
24709151
10.

Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots.

Xu QT, Yang L, Zhou ZQ, Mei FZ, Qu LH, Zhou GS.

Planta. 2013 Nov;238(5):969-82. doi: 10.1007/s00425-013-1947-4. Epub 2013 Aug 22.

PMID:
23975011
12.

Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings.

Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, González-Fontes A.

J Exp Bot. 2015 Jul;66(13):3831-40. doi: 10.1093/jxb/erv186. Epub 2015 Apr 28.

13.

An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.

Zhu C, Yang N, Guo Z, Qian M, Gan L.

Plant Physiol Biochem. 2016 Aug;105:37-44. doi: 10.1016/j.plaphy.2016.04.002. Epub 2016 Apr 2.

PMID:
27074220
14.

The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice.

Wang X, Zhang MM, Wang YJ, Gao YT, Li R, Wang GF, Li WQ, Liu WT, Chen KM.

Physiol Plant. 2016 Apr;156(4):421-43. doi: 10.1111/ppl.12389. Epub 2015 Oct 31.

PMID:
26400148
15.

A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat.

He X, Fang J, Li J, Qu B, Ren Y, Ma W, Zhao X, Li B, Wang D, Li Z, Tong Y.

Plant J. 2014 Mar;77(6):931-43. doi: 10.1111/tpj.12449. Epub 2014 Mar 8.

16.

An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.

Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M.

Plant Cell. 2017 Apr;29(4):775-790. doi: 10.1105/tpc.16.00976. Epub 2017 Mar 28.

PMID:
28351990
17.

Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions.

Königshofer H, Löppert HG.

J Plant Physiol. 2015 Jul 1;183:130-7. doi: 10.1016/j.jplph.2015.06.005. Epub 2015 Jun 19.

PMID:
26125123
18.

Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling.

Pelagio-Flores R, Ruiz-Herrera LF, López-Bucio J.

Physiol Plant. 2016 Sep;158(1):92-105. doi: 10.1111/ppl.12429. Epub 2016 Mar 30.

PMID:
26864878
19.

TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.

Yang T, Hao L, Yao S, Zhao Y, Lu W, Xiao K.

Plant Physiol Biochem. 2016 Jul;104:99-113. doi: 10.1016/j.plaphy.2016.03.023. Epub 2016 Mar 18.

PMID:
27107183
20.

Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death.

Mira MM, Hill RD, Stasolla C.

Plant Physiol. 2016 Nov;172(3):2044-2056. Epub 2016 Oct 4.

Supplemental Content

Support Center