Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 168

1.

Lipoamide channel-binding sulfonamides selectively inhibit mycobacterial lipoamide dehydrogenase.

Bryk R, Arango N, Maksymiuk C, Balakrishnan A, Wu YT, Wong CH, Masquelin T, Hipskind P, Lima CD, Nathan C.

Biochemistry. 2013 Dec 23;52(51):9375-84. doi: 10.1021/bi401077f.

2.

Triazaspirodimethoxybenzoyls as selective inhibitors of mycobacterial lipoamide dehydrogenase .

Bryk R, Arango N, Venugopal A, Warren JD, Park YH, Patel MS, Lima CD, Nathan C.

Biochemistry. 2010 Mar 2;49(8):1616-27. doi: 10.1021/bi9016186.

3.

Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein.

Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C.

Science. 2002 Feb 8;295(5557):1073-7.

4.

Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.

Baig IA, Moon JY, Lee SC, Ryoo SW, Yoon MY.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1338-50. doi: 10.1016/j.bbapap.2015.05.003.

PMID:
25988243
5.
6.

Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis.

Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD.

J Biol Chem. 2005 Oct 7;280(40):33977-83.

7.

High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase.

Arora G, Tiwari P, Mandal RS, Gupta A, Sharma D, Saha S, Singh R.

J Biol Chem. 2014 Sep 5;289(36):25149-65. doi: 10.1074/jbc.M114.597682.

8.

Discovery of Mycobacterium tuberculosis ╬▒-1,4-glucan branching enzyme (GlgB) inhibitors by structure- and ligand-based virtual screening.

Dkhar HK, Gopalsamy A, Loharch S, Kaur A, Bhutani I, Saminathan K, Bhagyaraj E, Chandra V, Swaminathan K, Agrawal P, Parkesh R, Gupta P.

J Biol Chem. 2015 Jan 2;290(1):76-89. doi: 10.1074/jbc.M114.589200.

9.

Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level.

Argyrou A, Sun G, Palfey BA, Blanchard JS.

Biochemistry. 2003 Feb 25;42(7):2218-28.

PMID:
12590611
10.

2-Carboxyquinoxalines kill mycobacterium tuberculosis through noncovalent inhibition of DprE1.

Neres J, Hartkoorn RC, Chiarelli LR, Gadupudi R, Pasca MR, Mori G, Venturelli A, Savina S, Makarov V, Kolly GS, Molteni E, Binda C, Dhar N, Ferrari S, Brodin P, Delorme V, Landry V, de Jesus Lopes Ribeiro AL, Farina D, Saxena P, Pojer F, Carta A, Luciani R, Porta A, Zanoni G, De Rossi E, Costi MP, Riccardi G, Cole ST.

ACS Chem Biol. 2015 Mar 20;10(3):705-14. doi: 10.1021/cb5007163.

PMID:
25427196
11.

Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes.

Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C.

Mol Microbiol. 2005 Aug;57(3):859-68.

12.

Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors.

Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, Yogeeswari P, Sriram D.

Bioorg Med Chem. 2014 Aug 1;22(15):4223-32. doi: 10.1016/j.bmc.2014.05.038.

PMID:
24953948
13.

High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU.

Rani C, Mehra R, Sharma R, Chib R, Wazir P, Nargotra A, Khan IA.

Tuberculosis (Edinb). 2015 Dec;95(6):664-77. doi: 10.1016/j.tube.2015.06.003.

PMID:
26318557
14.

Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins.

Faure M, Bourguignon J, Neuburger M, MacHerel D, Sieker L, Ober R, Kahn R, Cohen-Addad C, Douce R.

Eur J Biochem. 2000 May;267(10):2890-8. Erratum in: Eur J Biochem 2000 Jun;267(12):3914.

15.

Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes.

Argyrou A, Blanchard JS.

Biochemistry. 2001 Sep 25;40(38):11353-63.

PMID:
11560483
16.

Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis.

Stec J, Vilch├Ęze C, Lun S, Perryman AL, Wang X, Freundlich JS, Bishai W, Jacobs WR Jr, Kozikowski AP.

ChemMedChem. 2014 Nov;9(11):2528-37. doi: 10.1002/cmdc.201402255.

17.

Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads.

Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D.

Bioorg Med Chem. 2014 Mar 15;22(6):1938-47. doi: 10.1016/j.bmc.2014.01.030.

PMID:
24565972
18.

Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes.

Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C.

Cell Host Microbe. 2011 Jan 20;9(1):21-31. doi: 10.1016/j.chom.2010.12.004.

19.

Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis.

Paiva AM, Vanderwall DE, Blanchard JS, Kozarich JW, Williamson JM, Kelly TM.

Biochim Biophys Acta. 2001 Feb 9;1545(1-2):67-77.

PMID:
11342032
20.
Items per page

Supplemental Content

Support Center