Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Trypanosoma cruzi TcSMUG L-surface mucins promote development and infectivity in the triatomine vector Rhodnius prolixus.

Gonzalez MS, Souza MS, Garcia ES, Nogueira NF, Mello CB, Cánepa GE, Bertotti S, Durante IM, Azambuja P, Buscaglia CA.

PLoS Negl Trop Dis. 2013 Nov 14;7(11):e2552. doi: 10.1371/journal.pntd.0002552. eCollection 2013 Nov.

2.

Involvement of sulfated glycosaminoglycans on the development and attachment of Trypanosoma cruzi to the luminal midgut surface in the vector, Rhodnius prolixus.

Gonzalez MS, Silva LC, Albuquerque-Cunha JM, Nogueira NF, Mattos DP, Castro DP, Azambuja P, Garcia ES.

Parasitology. 2011 Dec;138(14):1870-7. doi: 10.1017/S0031182011001521. Epub 2011 Sep 9.

PMID:
21902871
3.

Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus.

Nogueira NF, Gonzalez MS, Gomes JE, de Souza W, Garcia ES, Azambuja P, Nohara LL, Almeida IC, Zingales B, Colli W.

Exp Parasitol. 2007 Jun;116(2):120-8. Epub 2007 Jan 13.

PMID:
17306256
4.

Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing.

Ferreira RC, Kessler RL, Lorenzo MG, Paim RM, Ferreira Lde L, Probst CM, Alves-Silva J, Guarneri AA.

Parasitology. 2016 Apr;143(4):434-43. doi: 10.1017/S0031182015001857. Epub 2016 Jan 28.

PMID:
26818093
5.

Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins.

Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, Agüero F, Buscaglia CA.

Biochem J. 2011 Sep 1;438(2):303-13. doi: 10.1042/BJ20110683.

PMID:
21651499
6.

Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner.

Elliot SL, Rodrigues Jde O, Lorenzo MG, Martins-Filho OA, Guarneri AA.

PLoS Negl Trop Dis. 2015 Mar 20;9(3):e0003646. doi: 10.1371/journal.pntd.0003646. eCollection 2015 Mar.

7.

Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut.

Uehara LA, Moreira OC, Oliveira AC, Azambuja P, Lima AP, Britto C, dos Santos AL, Branquinha MH, d'Avila-Levy CM.

PLoS Negl Trop Dis. 2012;6(12):e1958. doi: 10.1371/journal.pntd.0001958. Epub 2012 Dec 13.

8.

Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus.

Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, de Souza W, Azambuja P, Gonzalez MS.

Exp Parasitol. 2007 May;116(1):44-52. Epub 2007 Jan 23.

PMID:
17250827
9.

MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut.

Ennes-Vidal V, Menna-Barreto RF, Santos AL, Branquinha MH, d'Avila-Levy CM.

PLoS One. 2011 Apr 4;6(4):e18371. doi: 10.1371/journal.pone.0018371.

11.

A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus.

Soares TS, Buarque DS, Queiroz BR, Gomes CM, Braz GR, Araújo RN, Pereira MH, Guarneri AA, Tanaka AS.

Biochimie. 2015 May;112:41-8. doi: 10.1016/j.biochi.2015.02.014. Epub 2015 Feb 28.

PMID:
25731714
12.

Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus.

Gonzalez MS, Hamedi A, Albuquerque-Cunha JM, Nogueira NF, De Souza W, Ratcliffe NA, Azambuja P, Garcia ES, Mello CB.

Exp Parasitol. 2006 Dec;114(4):297-304. Epub 2006 Jun 8.

PMID:
16759654
13.

Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus.

Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P.

Parasit Vectors. 2016 Mar 1;9:119. doi: 10.1186/s13071-016-1398-4.

14.

Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus.

Cordero EM, Gentil LG, Crisante G, Ramírez JL, Yoshida N, Añez N, Franco da Silveira J.

Acta Trop. 2008 Jan;105(1):87-91. Epub 2007 Aug 21.

PMID:
17889817
15.

Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus.

Fellet MR, Lorenzo MG, Elliot SL, Carrasco D, Guarneri AA.

PLoS One. 2014 Aug 19;9(8):e105255. doi: 10.1371/journal.pone.0105255. eCollection 2014.

16.

Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus.

Peterson JK, Graham AL, Elliott RJ, Dobson AP, Triana Chávez O.

Parasitology. 2016 Aug;143(9):1157-67. doi: 10.1017/S0031182016000615. Epub 2016 May 13.

PMID:
27174360
17.

Structural features affecting trafficking, processing, and secretion of Trypanosoma cruzi mucins.

Cánepa GE, Mesías AC, Yu H, Chen X, Buscaglia CA.

J Biol Chem. 2012 Jul 27;287(31):26365-76. doi: 10.1074/jbc.M112.354696. Epub 2012 Jun 15.

18.

Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics.

Antunes LC, Han J, Pan J, Moreira CJ, Azambuja P, Borchers CH, Carels N.

PLoS One. 2013 Oct 30;8(10):e77283. doi: 10.1371/journal.pone.0077283. eCollection 2013.

19.

TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus.

Araújo CA, Waniek PJ, Jansen AM.

Parasit Vectors. 2014 Mar 4;7:94. doi: 10.1186/1756-3305-7-94.

20.

Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus.

Oliveira FO Jr, Alves CR, Souza-Silva F, Calvet CM, Côrtes LM, Gonzalez MS, Toma L, Bouças RI, Nader HB, Pereira MC.

Parasitology. 2012 May;139(6):735-43. doi: 10.1017/S0031182011002344. Epub 2012 Feb 7.

PMID:
22310218

Supplemental Content

Support Center