Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Entropy-rate clustering: cluster analysis via maximizing a submodular function subject to a matroid constraint.

Liu MY, Tuzel O, Ramalingam S, Chellappa R.

IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):99-112. doi: 10.1109/TPAMI.2013.107.

PMID:
24231869
2.

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.

Friedrich T, Neumann F.

Evol Comput. 2015 Winter;23(4):543-58. doi: 10.1162/EVCO_a_00159. Epub 2015 Jul 2.

PMID:
26135719
3.

Matroidal structure of generalized rough sets based on tolerance relations.

Li H, Liu Y, Zhu W.

ScientificWorldJournal. 2014;2014:243070. doi: 10.1155/2014/243070. Epub 2014 Aug 5.

4.

Weighted graph cuts without eigenvectors a multilevel approach.

Dhillon IS, Guan Y, Kulis B.

IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57.

PMID:
17848776
5.

Per-Round Knapsack-Constrained Linear Submodular Bandits.

Yu B, Fang M, Tao D.

Neural Comput. 2016 Dec;28(12):2757-2789. Epub 2016 Sep 14.

PMID:
27626968
6.

Real-time Superpixel Segmentation by DBSCAN Clustering Algorithm.

Shen J, Hao X, Liang Z, Liu Y, Wang W, Shao L.

IEEE Trans Image Process. 2016 Oct 11. [Epub ahead of print]

PMID:
27740485
7.

Image Segmentation Using Higher-Order Correlation Clustering.

Kim S, Yoo CD, Nowozin S, Kohli P.

IEEE Trans Pattern Anal Mach Intell. 2014 Sep;36(9):1761-74. doi: 10.1109/TPAMI.2014.2303095.

PMID:
26352230
9.

Task-specific image partitioning.

Kim S, Nowozin S, Kohli P, Yoo CD.

IEEE Trans Image Process. 2013 Feb;22(2):488-500. doi: 10.1109/TIP.2012.2218822. Epub 2012 Sep 19.

PMID:
23008253
10.

LEGClust- a clustering algorithm based on layered entropic subgraphs.

Santos JM, Marques de Sa J, Alexandre LA.

IEEE Trans Pattern Anal Mach Intell. 2008 Jan;30(1):62-75.

PMID:
18000325
11.

Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels.

Yang J, Gan Z, Li K, Hou C.

IEEE Trans Cybern. 2015 May;45(5):913-26. doi: 10.1109/TCYB.2014.2340032. Epub 2014 Jul 29.

PMID:
25095278
12.

Automatic classification of protein structures relying on similarities between alignments.

Santini G, Soldano H, Pothier J.

BMC Bioinformatics. 2012 Sep 14;13:233. doi: 10.1186/1471-2105-13-233.

13.

A K-means multivariate approach for clustering independent components from magnetoencephalographic data.

Spadone S, de Pasquale F, Mantini D, Della Penna S.

Neuroimage. 2012 Sep;62(3):1912-23. doi: 10.1016/j.neuroimage.2012.05.051. Epub 2012 May 24.

PMID:
22634861
14.

Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach.

Pihur V, Datta S, Datta S.

Bioinformatics. 2007 Jul 1;23(13):1607-15. Epub 2007 May 5.

PMID:
17483500
15.

A graph spectrum based geometric biclustering algorithm.

Wang DZ, Yan H.

J Theor Biol. 2013 Jan 21;317:200-11. doi: 10.1016/j.jtbi.2012.10.012. Epub 2012 Oct 16.

PMID:
23079285
16.

Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation.

Bampis CG, Maragos P, Bovik AC.

IEEE Trans Image Process. 2016 Oct 26. [Epub ahead of print]

PMID:
27810813
17.

Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation.

Huang X, Ye Y, Zhang H.

IEEE Trans Neural Netw Learn Syst. 2014 Aug;25(8):1433-46. doi: 10.1109/TNNLS.2013.2293795.

PMID:
25050942
18.

Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation.

Bampis CG, Maragos P, Bovik AC.

IEEE Trans Image Process. 2016 Oct 26. doi: 10.1109/TIP.2016.2621663. [Epub ahead of print]

PMID:
28113758
19.

Cumulative voting consensus method for partitions with variable number of clusters.

Ayad HG, Kamel MS.

IEEE Trans Pattern Anal Mach Intell. 2008 Jan;30(1):160-73.

PMID:
18000332
20.

A biased random-key genetic algorithm for data clustering.

Festa P.

Math Biosci. 2013 Sep;245(1):76-85. doi: 10.1016/j.mbs.2013.07.011. Epub 2013 Jul 26.

PMID:
23896381

Supplemental Content

Support Center