Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 285

1.

Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings.

Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL.

J Hazard Mater. 2013 Dec 15;263 Pt 2:677-84. doi: 10.1016/j.jhazmat.2013.10.030. Epub 2013 Oct 24.

PMID:
24231324
2.

Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

Zhang W, Musante C, White JC, Schwab P, Wang Q, Ebbs SD, Ma X.

Plant Physiol Biochem. 2017 Jan;110:185-193. doi: 10.1016/j.plaphy.2015.12.013. Epub 2015 Dec 25.

PMID:
26754029
3.

Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus).

Gui X, Rui M, Song Y, Ma Y, Rui Y, Zhang P, He X, Li Y, Zhang Z, Liu L.

Environ Sci Pollut Res Int. 2017 May;24(15):13775-13781. doi: 10.1007/s11356-017-8880-1. Epub 2017 Apr 11.

PMID:
28401392
4.

Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

Zhang W, Ebbs SD, Musante C, White JC, Gao C, Ma X.

J Agric Food Chem. 2015 Jan 21;63(2):382-90. doi: 10.1021/jf5052442. Epub 2015 Jan 7.

PMID:
25531028
5.

Species-specific toxicity of ceria nanoparticles to Lactuca plants.

Zhang P, Ma Y, Zhang Z, He X, Li Y, Zhang J, Zheng L, Zhao Y.

Nanotoxicology. 2015 Feb;9(1):1-8. doi: 10.3109/17435390.2013.855829. Epub 2013 Nov 21.

PMID:
24256192
6.

Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure.

Kumari M, Kumari SI, Kamal SS, Grover P.

Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:7-19. doi: 10.1016/j.mrgentox.2014.09.009. Epub 2014 Oct 2.

PMID:
25435351
7.

Solubility and batch retention of CeO2 nanoparticles in soils.

Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D.

Environ Sci Technol. 2011 Apr 1;45(7):2777-82. doi: 10.1021/es103769k. Epub 2011 Mar 15.

PMID:
21405081
8.

Effects of pH and phosphate on CeO2 nanoparticle dissolution.

Dahle JT, Livi K, Arai Y.

Chemosphere. 2015 Jan;119:1365-71. doi: 10.1016/j.chemosphere.2014.02.027. Epub 2014 Mar 12.

PMID:
24630459
9.

Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L).

Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL.

Plant Physiol Biochem. 2014 Nov;84:277-85. doi: 10.1016/j.plaphy.2014.09.018. Epub 2014 Sep 30.

PMID:
25439500
10.

Bt-transgenic cotton is more sensitive to CeO₂ nanoparticles than its parental non-transgenic cotton.

Li X, Gui X, Rui Y, Ji W, Van Nhan L, Yu Z, Peng S.

J Hazard Mater. 2014 Jun 15;274:173-80. doi: 10.1016/j.jhazmat.2014.04.025. Epub 2014 Apr 21.

PMID:
24793293
11.

Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber.

Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, Zheng L, Chu S, Yang K, Zhao Y, Chai Z.

Nanotoxicology. 2015 Mar;9(2):262-70. doi: 10.3109/17435390.2014.921344. Epub 2014 May 30.

PMID:
24877678
12.

Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.

Van Koetsem F, Xiao Y, Luo Z, Du Laing G.

Environ Sci Pollut Res Int. 2016 Mar;23(6):5277-87. doi: 10.1007/s11356-015-5708-8. Epub 2015 Nov 13.

PMID:
26564182
13.

Trans-generational impact of cerium oxide nanoparticles on tomato plants.

Wang Q, Ebbs SD, Chen Y, Ma X.

Metallomics. 2013 Jun;5(6):753-9. doi: 10.1039/c3mt00033h.

PMID:
23689668
14.

Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil.

Zhao L, Peralta-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna-Avila P, Montes MO, Keller AA, Gardea-Torresdey JL.

J Environ Sci (China). 2014 Feb 1;26(2):382-9.

PMID:
25076529
15.

Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests.

Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, Van de Meent D, Rydzyński K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR.

Environ Sci Technol. 2009 Jun 15;43(12):4537-46.

PMID:
19603674
16.

Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

Sánchez-García L, Bolea E, Laborda F, Cubel C, Ferrer P, Gianolio D, da Silva I, Castillo JR.

J Chromatogr A. 2016 Mar 18;1438:205-15. doi: 10.1016/j.chroma.2016.02.036. Epub 2016 Feb 15.

PMID:
26903472
17.

The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety.

Wang Q, Ma X, Zhang W, Pei H, Chen Y.

Metallomics. 2012 Oct;4(10):1105-12. Epub 2012 Sep 17.

PMID:
22986766
18.

CeO₂ and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus).

Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL.

J Agric Food Chem. 2014 Apr 2;62(13):2752-9. doi: 10.1021/jf405476u. Epub 2014 Mar 21.

PMID:
24611936
19.

Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species.

Zhang W, Pu Z, Du S, Chen Y, Jiang L.

Environ Pollut. 2016 May;212:584-91. doi: 10.1016/j.envpol.2016.03.011. Epub 2016 Mar 14.

PMID:
26986089
20.

Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans.

Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN.

Arch Environ Contam Toxicol. 2013 Aug;65(2):224-33. doi: 10.1007/s00244-013-9905-5. Epub 2013 Apr 26.

PMID:
23619766

Supplemental Content

Support Center