Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 190

1.

Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung.

Karnes HE, Duncavage EJ, Bernadt CT.

Cancer Cytopathol. 2014 Feb;122(2):104-13. doi: 10.1002/cncy.21361.

2.

Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms.

Young G, Wang K, He J, Otto G, Hawryluk M, Zwirco Z, Brennan T, Nahas M, Donahue A, Yelensky R, Lipson D, Sheehan CE, Boguniewicz AB, Stephens PJ, Miller VA, Ross JS.

Cancer Cytopathol. 2013 Dec;121(12):688-94. doi: 10.1002/cncy.21338.

3.

Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens.

Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, Sanford T, Buddavarapu K, Krosting J, Garmire L, Wylie D, Shinde R, Beaudenon S, Alexander EK, Mambo E, Adai AT, Latham GJ.

J Mol Diagn. 2013 Mar;15(2):234-47. doi: 10.1016/j.jmoldx.2012.11.006.

PMID:
23321017
4.

Using "residual" FNA rinse and body fluid specimens for next-generation sequencing: An institutional experience.

Wei S, Lieberman D, Morrissette JJ, Baloch ZW, Roth DB, McGrath C.

Cancer Cytopathol. 2016 May;124(5):324-9. doi: 10.1002/cncy.21666.

PMID:
26682952
5.

FNA smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas.

Treece AL, Montgomery ND, Patel NM, Civalier CJ, Dodd LG, Gulley ML, Booker JK, Weck KE.

Cancer Cytopathol. 2016 Jun;124(6):406-14. doi: 10.1002/cncy.21699.

PMID:
26882436
6.

Comparative study of epidermal growth factor receptor mutation analysis on cytology smears and surgical pathology specimens from primary and metastatic lung carcinomas.

Khode R, Larsen DA, Culbreath BC, Parrish S, Walker KL, Sayage-Rabie L, Beissner RS, Rao A.

Cancer Cytopathol. 2013 Jul;121(7):361-9. doi: 10.1002/cncy.21273.

7.

EGFR mutational genotyping of liquid based cytology samples obtained via fine needle aspiration (FNA) at endobronchial ultrasound of non-small cell lung cancer (NSCLC).

Reynolds JP, Tubbs RR, Minca EC, MacNamara S, Almeida FA, Ma PC, Pennell NA, Cicenia JC.

Lung Cancer. 2014 Nov;86(2):158-63. doi: 10.1016/j.lungcan.2014.09.003.

PMID:
25263855
8.

Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas.

Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP.

Am J Clin Pathol. 2015 Feb;143(2):193-200; quiz 306. doi: 10.1309/AJCPMY8UI7WSFSYY.

9.

FNA, core biopsy, or both for the diagnosis of lung carcinoma: Obtaining sufficient tissue for a specific diagnosis and molecular testing.

Coley SM, Crapanzano JP, Saqi A.

Cancer Cytopathol. 2015 May;123(5):318-26. doi: 10.1002/cncy.21527.

10.

Molecular characterization of small peripheral lung tumors based on the analysis of fine needle aspirates.

Zudaire I, Lozano MD, Vazquez MF, Pajares MJ, Agorreta J, Pio R, Zulueta JJ, Yankelevitz DF, Henschke CI, Montuenga LM.

Histol Histopathol. 2008 Jan;23(1):33-40.

PMID:
17952855
11.

Lung cancer adrenal gland metastasis: Optimal fine-needle aspirate and touch preparation smear cellularity characteristics for successful theranostic next-generation sequencing.

Gleeson FC, Kipp BR, Levy MJ, Voss JS, Campion MB, Minot DM, Tu ZJ, Klee EW, Lazaridis KN, Kerr SE.

Cancer Cytopathol. 2014 Nov;122(11):822-32. doi: 10.1002/cncy.21464.

12.

Clinical next-generation sequencing in patients with non-small cell lung cancer.

Hagemann IS, Devarakonda S, Lockwood CM, Spencer DH, Guebert K, Bredemeyer AJ, Al-Kateb H, Nguyen TT, Duncavage EJ, Cottrell CE, Kulkarni S, Nagarajan R, Seibert K, Baggstrom M, Waqar SN, Pfeifer JD, Morgensztern D, Govindan R.

Cancer. 2015 Feb 15;121(4):631-9. doi: 10.1002/cncr.29089.

13.

Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalin-fixed, paraffin-embedded tissue.

Gailey MP, Stence AA, Jensen CS, Ma D.

Cancer Cytopathol. 2015 Jan;123(1):30-9. doi: 10.1002/cncy.21476.

14.

Lung adenocarcinoma and its thyroid metastasis characterized on fine-needle aspirates by cytomorphology, immunocytochemistry, and next-generation sequencing.

Bellevicine C, Vigliar E, Malapelle U, Carelli E, Fiorelli A, Vicidomini G, Cappabianca S, Santini M, Troncone G.

Diagn Cytopathol. 2015 Jul;43(7):585-9. doi: 10.1002/dc.23264.

PMID:
25900221
15.

Next-generation sequencing for molecular diagnosis of lung adenocarcinoma specimens obtained by fine needle aspiration cytology.

Qiu T, Guo H, Zhao H, Wang L, Zhang Z.

Sci Rep. 2015 Jun 11;5:11317. doi: 10.1038/srep11317.

16.

Cytology smears as excellent starting material for next-generation sequencing-based molecular testing of patients with adenocarcinoma of the lung.

Velizheva NP, Rechsteiner MP, Wong CE, Zhong Q, Rössle M, Bode B, Moch H, Soltermann A, Wild PJ, Tischler V.

Cancer. 2017 Jan;125(1):30-40. doi: 10.1002/cncy.21771.

PMID:
27636102
18.

Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era?

da Cunha Santos G, Liu N, Tsao MS, Kamel-Reid S, Chin K, Geddie WR.

Cancer Cytopathol. 2010 Dec 25;118(6):450-6. doi: 10.1002/cncy.20102.

19.

Integration of Wet and Dry Bench Processes Optimizes Targeted Next-generation Sequencing of Low-quality and Low-quantity Tumor Biopsies.

Houghton J, Hadd AG, Zeigler R, Haynes BC, Latham GJ.

J Vis Exp. 2016 Apr 11;(110):e53836. doi: 10.3791/53836.

20.

Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics.

Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP.

Mod Pathol. 2014 Feb;27(2):314-27. doi: 10.1038/modpathol.2013.122.

Items per page

Supplemental Content

Support Center