Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102


Brain tissue oxygen monitoring identifies cortical hypoxia and thalamic hyperoxia after experimental cardiac arrest in rats.

Manole MD, Kochanek PM, Bayır H, Alexander H, Dezfulian C, Fink EL, Bell MJ, Clark RS.

Pediatr Res. 2014 Feb;75(2):295-301. doi: 10.1038/pr.2013.220. Epub 2013 Nov 13.


Enduring disturbances in regional cerebral blood flow and brain oxygenation at 24 h after asphyxial cardiac arrest in developing rats.

Foley LM, Clark RS, Vazquez AL, Hitchens TK, Alexander H, Ho C, Kochanek PM, Manole MD.

Pediatr Res. 2017 Jan;81(1-1):94-98. doi: 10.1038/pr.2016.175. Epub 2016 Sep 16.


Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats.

Manole MD, Foley LM, Hitchens TK, Kochanek PM, Hickey RW, Bayir H, Alexander H, Ho C, Clark RS.

J Cereb Blood Flow Metab. 2009 Jan;29(1):197-205. doi: 10.1038/jcbfm.2008.112. Epub 2008 Oct 1.


Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI.

Drabek T, Foley LM, Janata A, Stezoski J, Hitchens TK, Manole MD, Kochanek PM.

Resuscitation. 2014 Jul;85(7):964-71. doi: 10.1016/j.resuscitation.2014.03.314. Epub 2014 Apr 12.


Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats.

Lipinski CA, Hicks SD, Callaway CW.

Resuscitation. 1999 Nov;42(3):221-9.


Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress.

Walson KH, Tang M, Glumac A, Alexander H, Manole MD, Ma L, Hsia CJ, Clark RS, Kochanek PM, Kagan VE, Bayr H.

Crit Care Med. 2011 Feb;39(2):335-43. doi: 10.1097/CCM.0b013e3181ffda0e.


Post-cardiac arrest hyperoxia and mitochondrial function.

Angelos MG, Yeh ST, Aune SE.

Resuscitation. 2011 Dec;82 Suppl 2:S48-51. doi: 10.1016/S0300-9572(11)70151-4.


Brain tissue oxygen monitoring after severe traumatic brain injury in children: relationship to outcome and association with other clinical parameters.

Stippler M, Ortiz V, Adelson PD, Chang YF, Tyler-Kabara EC, Wisniewski SR, Fink EL, Kochanek PM, Brown SD, Bell MJ.

J Neurosurg Pediatr. 2012 Nov;10(5):383-91. doi: 10.3171/2012.8.PEDS12165. Epub 2012 Sep 14.


The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury.

Figaji AA, Zwane E, Graham Fieggen A, Argent AC, Le Roux PD, Peter JC.

Neurocrit Care. 2010 Jun;12(3):430-7. doi: 10.1007/s12028-010-9344-3.


Thalamocortical dysfunction and thalamic injury after asphyxial cardiac arrest in developing rats.

Shoykhet M, Simons DJ, Alexander H, Hosler C, Kochanek PM, Clark RS.

J Neurosci. 2012 Apr 4;32(14):4972-81. doi: 10.1523/JNEUROSCI.5597-11.2012.


Relationship between arterial partial oxygen pressure after resuscitation from cardiac arrest and mortality in children.

Ferguson LP, Durward A, Tibby SM.

Circulation. 2012 Jul 17;126(3):335-42. doi: 10.1161/CIRCULATIONAHA.111.085100. Epub 2012 Jun 21.


Hyperoxia and hypoxia in children resuscitated from cardiac arrest.

Guerra-Wallace MM, Casey FL 3rd, Bell MJ, Fink EL, Hickey RW.

Pediatr Crit Care Med. 2013 Mar;14(3):e143-8. doi: 10.1097/PCC.0b013e3182720440.


20-Hydroxyeicosatetraenoic Acid Inhibition by HET0016 Offers Neuroprotection, Decreases Edema, and Increases Cortical Cerebral Blood Flow in a Pediatric Asphyxial Cardiac Arrest Model in Rats.

Shaik JS, Poloyac SM, Kochanek PM, Alexander H, Tudorascu DL, Clark RS, Manole MD.

J Cereb Blood Flow Metab. 2015 Nov;35(11):1757-63. doi: 10.1038/jcbfm.2015.117. Epub 2015 Jun 10.


Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization.

Rivers EP, Rady MY, Martin GB, Fenn NM, Smithline HA, Alexander ME, Nowak RM.

Chest. 1992 Dec;102(6):1787-93.


Positive end-expiratory pressure improves survival in a rodent model of cardiopulmonary resuscitation using high-dose epinephrine.

McCaul C, Kornecki A, Engelberts D, McNamara P, Kavanagh BP.

Anesth Analg. 2009 Oct;109(4):1202-8. doi: 10.1213/ANE.0b013e3181b278a3.


Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest.

Tress EE, Clark RS, Foley LM, Alexander H, Hickey RW, Drabek T, Kochanek PM, Manole MD.

Neurosci Lett. 2014 Aug 22;578:17-21. doi: 10.1016/j.neulet.2014.06.020. Epub 2014 Jun 14.


Real-time monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest in rat.

Junyun He, Hongyang Lu, Ruoxian Deng, Young L, Shanbao Tong, Xiaofeng Jia.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6971-4. doi: 10.1109/EMBC.2015.7319996.


Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis.

Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, Donadello K, Dewitte O, Vincent JL, De Backer D.

Crit Care Med. 2014 Feb;42(2):e114-22. doi: 10.1097/CCM.0b013e3182a641b8.


Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia.

Ainslie PN, Ogoh S, Burgess K, Celi L, McGrattan K, Peebles K, Murrell C, Subedi P, Burgess KR.

J Appl Physiol (1985). 2008 Feb;104(2):490-8. Epub 2007 Nov 29.


Hypoxia, hyperoxia, ischemia, and brain necrosis.

Miyamoto O, Auer RN.

Neurology. 2000 Jan 25;54(2):362-71.


Supplemental Content

Support Center