Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes.

Gotthard G, Hiblot J, Gonzalez D, Elias M, Chabriere E.

PLoS One. 2013 Nov 4;8(11):e77995. doi: 10.1371/journal.pone.0077995. eCollection 2013.


Crystallization and preliminary X-ray diffraction analysis of the organophosphorus hydrolase OPHC2 from Pseudomonas pseudoalcaligenes.

Gotthard G, Hiblot J, Gonzalez D, Chabrière E, Elias M.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jan 1;69(Pt 1):73-6. doi: 10.1107/S174430911205049X. Epub 2012 Dec 25.


An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2.

Chu XY, Tian J, Wu NF, Fan YL.

Appl Microbiol Biotechnol. 2010 Sep;88(1):125-31. doi: 10.1007/s00253-010-2738-5. Epub 2010 Jul 4.


Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp.

Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH.

Biotechnol Bioeng. 2014 Oct;111(10):1920-30. doi: 10.1002/bit.25272. Epub 2014 Jul 14.


Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus.

Hawwa R, Aikens J, Turner RJ, Santarsiero BD, Mesecar AD.

Arch Biochem Biophys. 2009 Aug 15;488(2):109-20. doi: 10.1016/ Epub 2009 Jul 16.


Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily.

Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM.

Biochemistry. 2009 Mar 17;48(10):2237-47. doi: 10.1021/bi802274f.


Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus.

Hiblot J, Gotthard G, Chabriere E, Elias M.

PLoS One. 2012;7(10):e47028. doi: 10.1371/journal.pone.0047028. Epub 2012 Oct 10.


Improving the thermostability of a methyl parathion hydrolase by adding the ionic bond on protein surface.

Su Y, Tian J, Wang P, Chu X, Liu G, Wu N, Fan Y.

Appl Biochem Biotechnol. 2011 Oct;165(3-4):989-97. doi: 10.1007/s12010-011-9314-z. Epub 2011 Jul 5.


Hyperthermophilic phosphotriesterases/lactonases for the environment and human health.

Mandrich L, Merone L, Manco G.

Environ Technol. 2010 Sep;31(10):1115-27. doi: 10.1080/09593331003789529.


Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.

Hawwa R, Larsen SD, Ratia K, Mesecar AD.

J Mol Biol. 2009 Oct 16;393(1):36-57. doi: 10.1016/j.jmb.2009.06.083. Epub 2009 Jul 22.


Structural basis for natural lactonase and promiscuous phosphotriesterase activities.

Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E.

J Mol Biol. 2008 Jun 20;379(5):1017-28. doi: 10.1016/j.jmb.2008.04.022. Epub 2008 Apr 16.


In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase.

Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL.

J Mol Biol. 2008 Feb 1;375(5):1189-96. Epub 2007 Nov 1.


Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia.

Hiblot J, Bzdrenga J, Champion C, Chabriere E, Elias M.

Sci Rep. 2015 Feb 11;5:8372. doi: 10.1038/srep08372.


SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase.

Bzdrenga J, Hiblot J, Gotthard G, Champion C, Elias M, Chabriere E.

BMC Res Notes. 2014 Jun 3;7:333. doi: 10.1186/1756-0500-7-333.


Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides.

Zhang Y, An J, Ye W, Yang G, Qian ZG, Chen HF, Cui L, Feng Y.

Appl Environ Microbiol. 2012 Sep;78(18):6647-55. doi: 10.1128/AEM.01122-12. Epub 2012 Jul 13.


Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.

Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Höcker B, Sterner R, Raushel FM.

J Am Chem Soc. 2013 Aug 7;135(31):11670-7. doi: 10.1021/ja405911h. Epub 2013 Jul 29.


Structural characterization of the catalytic calcium-binding site in diisopropyl fluorophosphatase (DFPase)--comparison with related beta-propeller enzymes.

Blum MM, Chen JC.

Chem Biol Interact. 2010 Sep 6;187(1-3):373-9. doi: 10.1016/j.cbi.2010.02.043. Epub 2010 Mar 3.


Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties.

Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, Oh JW, Cho HS.

BMC Struct Biol. 2007 Jul 12;7:47.


Characterizations of Two Bacterial Persulfide Dioxygenases of the Metallo-β-lactamase Superfamily.

Sattler SA, Wang X, Lewis KM, DeHan PJ, Park CM, Xin Y, Liu H, Xian M, Xun L, Kang C.

J Biol Chem. 2015 Jul 31;290(31):18914-23. doi: 10.1074/jbc.M115.652537. Epub 2015 Jun 16.


Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution.

Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CM, Russell RJ, Oakeshott JG, Ollis DL.

Protein Eng. 2003 Feb;16(2):135-45. Erratum in: Protein Eng. 2003 Mar;16(3):241.


Supplemental Content

Support Center