Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Reconstruction and analysis of human kidney-specific metabolic network based on omics data.

Zhang AD, Dai SX, Huang JF.

Biomed Res Int. 2013;2013:187509. doi: 10.1155/2013/187509. Epub 2013 Oct 5.

2.

Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data.

Zhao Y, Huang J.

Biochem Biophys Res Commun. 2011 Nov 25;415(3):450-4. doi: 10.1016/j.bbrc.2011.10.090. Epub 2011 Oct 25.

PMID:
22057009
3.

The reconstruction and analysis of tissue specific human metabolic networks.

Hao T, Ma HW, Zhao XM, Goryanin I.

Mol Biosyst. 2012 Feb;8(2):663-70. doi: 10.1039/c1mb05369h. Epub 2011 Dec 19.

PMID:
22183149
4.

Network-based prediction of human tissue-specific metabolism.

Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E.

Nat Biotechnol. 2008 Sep;26(9):1003-10. doi: 10.1038/nbt.1487.

PMID:
18711341
5.

Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE.

Wang Y, Eddy JA, Price ND.

BMC Syst Biol. 2012 Dec 13;6:153. doi: 10.1186/1752-0509-6-153.

6.

A comprehensive functional analysis of tissue specificity of human gene expression.

Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, Dosymbekov D, Bugrim A, Rakhmatulin E, Brennan RJ, Guryanov A, Li K, Blake J, Samaha RR, Nikolskaya T.

BMC Biol. 2008 Nov 12;6:49. doi: 10.1186/1741-7007-6-49.

7.

Crosstissue coexpression network of aging.

Huang T, Zhang J, Xie L, Dong X, Zhang L, Cai YD, Li YX.

OMICS. 2011 Oct;15(10):665-71. doi: 10.1089/omi.2011.0034. Epub 2011 Jul 13.

PMID:
21751870
8.

A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

Roy P, Kumar B, Shende A, Singh A, Meena A, Ghosal R, Ranganathan M, Bandyopadhyay A.

PLoS One. 2013 May 22;8(5):e63670. doi: 10.1371/journal.pone.0063670. Print 2013.

9.

Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes.

Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, Asplund A, Nookaew I, Uhlén M, Pedersen BK, Nielsen J.

Cell Rep. 2015 May 12;11(6):921-933. doi: 10.1016/j.celrep.2015.04.010. Epub 2015 Apr 30. Erratum in: Cell Rep. 2016 Feb 16;14(6):1567.

10.

A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1.

Sigurdsson MI, Jamshidi N, Steingrimsson E, Thiele I, Palsson BØ.

BMC Syst Biol. 2010 Oct 19;4:140. doi: 10.1186/1752-0509-4-140.

11.

Flux-coupled genes and their use in metabolic flux analysis.

Kim HU, Kim WJ, Lee SY.

Biotechnol J. 2013 Sep;8(9):1035-42. doi: 10.1002/biot.201200279. Epub 2013 Mar 21.

PMID:
23420780
12.
13.

Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

Zhao J, Geng C, Tao L, Zhang D, Jiang Y, Tang K, Zhu R, Yu H, Zhang W, He F, Li Y, Cao Z.

J Proteome Res. 2010 Apr 5;9(4):1648-58. doi: 10.1021/pr9006188.

PMID:
20136149
14.

Data integration and analysis of biological networks.

Kim TY, Kim HU, Lee SY.

Curr Opin Biotechnol. 2010 Feb;21(1):78-84. doi: 10.1016/j.copbio.2010.01.003. Epub 2010 Feb 6.

PMID:
20138751
15.

Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT.

Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J.

PLoS Comput Biol. 2012;8(5):e1002518. doi: 10.1371/journal.pcbi.1002518. Epub 2012 May 17.

16.

Selection of human tissue-specific elementary flux modes using gene expression data.

Rezola A, Pey J, de Figueiredo LF, Podhorski A, Schuster S, Rubio A, Planes FJ.

Bioinformatics. 2013 Aug 15;29(16):2009-16. doi: 10.1093/bioinformatics/btt328. Epub 2013 Jun 6.

PMID:
23742984
17.

Genome-scale modeling of human metabolism - a systems biology approach.

Mardinoglu A, Gatto F, Nielsen J.

Biotechnol J. 2013 Sep;8(9):985-96. doi: 10.1002/biot.201200275. Epub 2013 Apr 24. Review.

PMID:
23613448
18.

Multi-omics approach for estimating metabolic networks using low-order partial correlations.

Kayano M, Imoto S, Yamaguchi R, Miyano S.

J Comput Biol. 2013 Aug;20(8):571-82. doi: 10.1089/cmb.2013.0043.

PMID:
23899012
19.

A global view of transcriptome dynamics during flower development in chickpea by deep sequencing.

Singh VK, Garg R, Jain M.

Plant Biotechnol J. 2013 Aug;11(6):691-701. doi: 10.1111/pbi.12059. Epub 2013 Apr 1.

20.

First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database.

Chinese Human Liver Proteome Profiling Consortium.

J Proteome Res. 2010 Jan;9(1):79-94. doi: 10.1021/pr900532r.

PMID:
19653699

Supplemental Content

Support Center