Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures.

Jiang L, Choi WS, Jeen H, Dong S, Kim Y, Han MG, Zhu Y, Kalinin SV, Dagotto E, Egami T, Lee HN.

Nano Lett. 2013;13(12):5837-43. doi: 10.1021/nl4025598. Epub 2013 Nov 14.

PMID:
24205817
2.

Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface.

Yin YW, Burton JD, Kim YM, Borisevich AY, Pennycook SJ, Yang SM, Noh TW, Gruverman A, Li XG, Tsymbal EY, Li Q.

Nat Mater. 2013 May;12(5):397-402. doi: 10.1038/nmat3564. Epub 2013 Feb 17.

PMID:
23416728
3.

Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions.

Wen Z, Li C, Wu D, Li A, Ming N.

Nat Mater. 2013 Jul;12(7):617-21. doi: 10.1038/nmat3649. Epub 2013 May 19.

PMID:
23685861
4.

Polarization-Mediated Modulation of Electronic and Transport Properties of Hybrid MoS2-BaTiO3-SrRuO3 Tunnel Junctions.

Li T, Sharma P, Lipatov A, Lee H, Lee JW, Zhuravlev MY, Paudel TR, Genenko YA, Eom CB, Tsymbal EY, Sinitskii A, Gruverman A.

Nano Lett. 2017 Feb 8;17(2):922-927. doi: 10.1021/acs.nanolett.6b04247. Epub 2017 Jan 20.

PMID:
28094991
5.

Overcoming the Fundamental Barrier Thickness Limits of Ferroelectric Tunnel Junctions through BaTiO3/SrTiO3 Composite Barriers.

Wang L, Cho MR, Shin YJ, Kim JR, Das S, Yoon JG, Chung JS, Noh TW.

Nano Lett. 2016 Jun 8;16(6):3911-8. doi: 10.1021/acs.nanolett.6b01418. Epub 2016 May 24.

PMID:
27195918
6.

Enhanced Tunneling Electroresistance in Ferroelectric Tunnel Junctions due to the Reversible Metallization of the Barrier.

Liu X, Burton JD, Tsymbal EY.

Phys Rev Lett. 2016 May 13;116(19):197602. doi: 10.1103/PhysRevLett.116.197602. Epub 2016 May 11. Erratum in: Phys Rev Lett. 2016 May 20;116(20):209902.

PMID:
27232046
7.

Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale.

Gruverman A, Wu D, Lu H, Wang Y, Jang HW, Folkman CM, Zhuravlev MY, Felker D, Rzchowski M, Eom CB, Tsymbal EY.

Nano Lett. 2009 Oct;9(10):3539-43. doi: 10.1021/nl901754t.

PMID:
19697939
8.

Electroresistance effect in ferroelectric tunnel junctions with symmetric electrodes.

Bilc DI, Novaes FD, Iñiguez J, Ordejón P, Ghosez P.

ACS Nano. 2012 Feb 28;6(2):1473-8. doi: 10.1021/nn2043324. Epub 2012 Jan 19.

PMID:
22229393
9.

Ferroelectric tunnel junctions with graphene electrodes.

Lu H, Lipatov A, Ryu S, Kim DJ, Lee H, Zhuravlev MY, Eom CB, Tsymbal EY, Sinitskii A, Gruverman A.

Nat Commun. 2014 Nov 24;5:5518. doi: 10.1038/ncomms6518.

PMID:
25417720
10.

Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions.

Bocher L, Gloter A, Crassous A, Garcia V, March K, Zobelli A, Valencia S, Enouz-Vedrenne S, Moya X, Mathur ND, Deranlot C, Fusil S, Bouzehouane K, Bibes M, Barthélémy A, Colliex C, Stéphan O.

Nano Lett. 2012 Jan 11;12(1):376-82. doi: 10.1021/nl203657c. Epub 2011 Dec 28. Erratum in: Nano Lett. 2012 Feb 8;12(2):1113. Marthur, Neil D [corrected to Mathur, Neil D].

PMID:
22191458
11.

Electric field control of magnetic properties and electron transport in BaTiO₃-based multiferroic heterostructures.

Asa M, Baldrati L, Rinaldi C, Bertoli S, Radaelli G, Cantoni M, Bertacco R.

J Phys Condens Matter. 2015 Dec 23;27(50):504004. doi: 10.1088/0953-8984/27/50/504004. Epub 2015 Nov 27.

PMID:
26613190
12.

Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions.

Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim SK, Jeong DS, Pertsev NA, Kohlstedt H.

Nat Commun. 2014 Nov 17;5:5414. doi: 10.1038/ncomms6414.

PMID:
25399545
13.

Bottom-up preparation of porous metal-oxide ultrathin sheets with adjustable composition/phases and their applications.

Zhu J, Yin Z, Li H, Tan H, Chow CL, Zhang H, Hng HH, Ma J, Yan Q.

Small. 2011 Dec 16;7(24):3458-64. doi: 10.1002/smll.201101729. Epub 2011 Nov 7.

PMID:
22058077
14.

Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions.

Velev JP, Duan CG, Belashchenko KD, Jaswal SS, Tsymbal EY.

Phys Rev Lett. 2007 Mar 30;98(13):137201. Epub 2007 Mar 26.

PMID:
17501233
15.

Ultrathin BaTiO₃-based ferroelectric tunnel junctions through interface engineering.

Li C, Huang L, Li T, Lü W, Qiu X, Huang Z, Liu Z, Zeng S, Guo R, Zhao Y, Zeng K, Coey M, Chen J, Ariando, Venkatesan T.

Nano Lett. 2015 Apr 8;15(4):2568-73. doi: 10.1021/acs.nanolett.5b00138. Epub 2015 Mar 24.

PMID:
25800535
16.

Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y.

J Am Chem Soc. 2009 Jul 1;131(25):8824-32. doi: 10.1021/ja900353f.

PMID:
19496564
17.

Spin control by application of electric current and voltage in FeCo-MgO junctions.

Suzuki Y, Kubota H, Tulapurkar A, Nozaki T.

Philos Trans A Math Phys Eng Sci. 2011 Sep 28;369(1951):3658-78. doi: 10.1098/rsta.2011.0190.

18.

Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions.

Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K.

Nat Mater. 2004 Dec;3(12):868-71. Epub 2004 Oct 31.

PMID:
15516927
19.

Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions.

Jin Hu W, Wang Z, Yu W, Wu T.

Nat Commun. 2016 Feb 29;7:10808. doi: 10.1038/ncomms10808.

20.

Mechanically-induced resistive switching in ferroelectric tunnel junctions.

Lu H, Kim DJ, Bark CW, Ryu S, Eom CB, Tsymbal EY, Gruverman A.

Nano Lett. 2012 Dec 12;12(12):6289-92. doi: 10.1021/nl303396n. Epub 2012 Nov 26.

PMID:
23181389

Supplemental Content

Support Center