Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.
2.

The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI.

Zhang B, Yang B, Zhai C, Jiang B, Wu Y.

Biomaterials. 2013 Jul;34(23):5843-52. doi: 10.1016/j.biomaterials.2013.04.021. Epub 2013 May 2.

PMID:
23642536
3.

Mouse lymphatic endothelial cell targeted probes: anti-LYVE-1 antibody-based magnetic nanoparticles.

Guo Q, Liu Y, Xu K, Ren K, Sun W.

Int J Nanomedicine. 2013;8:2273-84. doi: 10.2147/IJN.S45817. Epub 2013 Jun 21.

4.

Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

Zhang B, Jiang B, Chen Y, Huang H, Xie Q, Kang M, Zhang H, Zhai C, Wu Y.

Contrast Media Mol Imaging. 2012 Jan-Feb;7(1):35-44. doi: 10.1002/cmmi.461.

PMID:
22344878
5.

Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles.

Juang JH, Shen CR, Wang JJ, Kuo CH, Chien YW, Kuo HY, Chen FR, Chen MH, Yen TC, Tsai ZT.

PLoS One. 2013 Apr 29;8(4):e62626. doi: 10.1371/journal.pone.0062626. Print 2013.

6.

An MRI-visible non-viral vector for targeted Bcl-2 siRNA delivery to neuroblastoma.

Shen M, Gong F, Pang P, Zhu K, Meng X, Wu C, Wang J, Shan H, Shuai X.

Int J Nanomedicine. 2012;7:3319-32. doi: 10.2147/IJN.S32900. Epub 2012 Jul 2.

7.

Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging.

Huang H, Xie Q, Kang M, Zhang B, Zhang H, Chen J, Zhai C, Yang D, Jiang B, Wu Y.

Nanotechnology. 2009 Sep 9;20(36):365101. doi: 10.1088/0957-4484/20/36/365101. Epub 2009 Aug 18.

PMID:
19687538
8.

Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy.

Liang PC, Chen YC, Chiang CF, Mo LR, Wei SY, Hsieh WY, Lin WL.

Int J Nanomedicine. 2016 May 12;11:2021-37. doi: 10.2147/IJN.S94139. eCollection 2016.

9.

Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging.

Chen YW, Liou GG, Pan HB, Tseng HH, Hung YT, Chou CP.

Int J Nanomedicine. 2015 Nov 11;10:6997-7018. doi: 10.2147/IJN.S86592. eCollection 2015.

10.

[Construction of RGD10-NGR9 dual-targeting superparamagnetic iron oxide and its magnetic resonance imaging features in nude mice].

Wu QY, Shi JY, Zhang J, Zhang LQ, Zhao YM, Tang L, Chen Y, He XD, Liu H, Su B.

Zhonghua Zhong Liu Za Zhi. 2013 Nov;35(11):808-13. Chinese.

PMID:
24447476
11.

Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages.

Saito S, Tsugeno M, Koto D, Mori Y, Yoshioka Y, Nohara S, Murase K.

Int J Nanomedicine. 2012;7:5415-21. doi: 10.2147/IJN.S33709. Epub 2012 Oct 10.

12.

Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines.

He Y, Song W, Lei J, Li Z, Cao J, Huang S, Meng J, Xu H, Jin Z, Xue H.

Acta Radiol. 2012 Nov 1;53(9):1049-58. doi: 10.1258/ar.2012.120055. Epub 2012 Sep 25.

PMID:
23012484
13.

Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis.

Yan C, Wu Y, Feng J, Chen W, Liu X, Hao P, Yang R, Zhang J, Lin B, Xu Y, Liu R.

Int J Nanomedicine. 2013;8:245-55. doi: 10.2147/IJN.S38678. Epub 2013 Jan 11.

14.
15.

Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles.

Juang JH, Wang JJ, Shen CR, Kuo CH, Chien YW, Kuo HY, Tsai ZT, Yen TC.

Transplant Proc. 2010 Jul-Aug;42(6):2104-8. doi: 10.1016/j.transproceed.2010.05.103.

PMID:
20692419
16.

Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner.

Li X, Du X, Huo T, Liu X, Zhang S, Yuan F.

Acta Radiol. 2009 Jul;50(6):583-94. doi: 10.1080/02841850902902557.

PMID:
19449236
17.

Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity.

Hong GB, Zhou JX, Yuan RX.

Int J Nanomedicine. 2012;7:2863-72. doi: 10.2147/IJN.S25739. Epub 2012 Jun 11.

18.

One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

Dai L, Liu Y, Wang Z, Guo F, Shi D, Zhang B.

Mater Sci Eng C Mater Biol Appl. 2014 Aug 1;41:161-7. doi: 10.1016/j.msec.2014.04.041. Epub 2014 Apr 28.

PMID:
24907749
19.

Specific targeting of nasopharyngeal carcinoma cell line CNE1 by C225-conjugated ultrasmall superparamagnetic iron oxide particles with magnetic resonance imaging.

Liu D, Chen C, Hu G, Mei Q, Qiu H, Long G, Hu G.

Acta Biochim Biophys Sin (Shanghai). 2011 Apr;43(4):301-6. doi: 10.1093/abbs/gmr010. Epub 2011 Feb 23.

PMID:
21345916
20.

Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes.

Frascione D, Diwoky C, Almer G, Opriessnig P, Vonach C, Gradauer K, Leitinger G, Mangge H, Stollberger R, Prassl R.

Int J Nanomedicine. 2012;7:2349-59. doi: 10.2147/IJN.S30617. Epub 2012 May 9.

Supplemental Content

Support Center