Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 177

1.

Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells.

An Q, Sun C, Li D, Xu K, Guo J, Wang C.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13248-57. doi: 10.1021/am4042367. Epub 2013 Nov 19.

PMID:
24199694
2.

Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging.

Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X.

Biomaterials. 2013 Nov;34(33):8382-92. doi: 10.1016/j.biomaterials.2013.07.070. Epub 2013 Aug 7.

PMID:
23932250
3.

Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene.

Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y.

ACS Appl Mater Interfaces. 2015 May 13;7(18):9807-16. doi: 10.1021/acsami.5b01758. Epub 2015 May 4.

PMID:
25909624
4.

Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles.

Heidari Majd M, Asgari D, Barar J, Valizadeh H, Kafil V, Coukos G, Omidi Y.

J Drug Target. 2013 May;21(4):328-40. doi: 10.3109/1061186X.2012.750325. Epub 2013 Jan 7.

PMID:
23293842
5.

Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW.

ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8233-42. doi: 10.1021/acsami.5b01271. Epub 2015 Apr 9.

PMID:
25826467
6.

Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through fenton chemistry.

Tian J, Peehl DM, Knox SJ.

Cancer Biother Radiopharm. 2010 Aug;25(4):439-48. doi: 10.1089/cbr.2009.0756.

PMID:
20735206
7.

Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging.

Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X.

Biomaterials. 2014 Apr;35(11):3666-77. doi: 10.1016/j.biomaterials.2014.01.011. Epub 2014 Jan 24.

PMID:
24462358
8.

Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy.

Fu S, Wang S, Zhang X, Qi A, Liu Z, Yu X, Chen C, Li L.

Colloids Surf B Biointerfaces. 2017 Jun 1;154:239-245. doi: 10.1016/j.colsurfb.2017.03.038. Epub 2017 Mar 18.

PMID:
28347945
9.

Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

Tomasetti M, Nocchi L, Neuzil J, Goodwin J, Nguyen M, Dong L, Manzella N, Staffolani S, Milanese C, Garrone B, Alleva R, Borghi B, Santarelli L, Guerrieri R.

PLoS One. 2012;7(12):e52263. doi: 10.1371/journal.pone.0052263. Epub 2012 Dec 18.

10.

Mitochondrial DNA damage is sensitive to exogenous H(2)O(2) but independent of cellular ROS production in prostate cancer cells.

Chan SW, Nguyen PN, Ayele D, Chevalier S, Aprikian A, Chen JZ.

Mutat Res. 2011 Nov 1;716(1-2):40-50. doi: 10.1016/j.mrfmmm.2011.07.019. Epub 2011 Aug 5.

PMID:
21843533
11.

ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH.

Vallabani NV, Karakoti AS, Singh S.

Colloids Surf B Biointerfaces. 2017 May 1;153:52-60. doi: 10.1016/j.colsurfb.2017.02.004. Epub 2017 Feb 9.

PMID:
28214671
12.

Free radicals, metals and antioxidants in oxidative stress-induced cancer.

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M.

Chem Biol Interact. 2006 Mar 10;160(1):1-40. Epub 2006 Jan 23. Review.

PMID:
16430879
13.
14.

Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE.

Nano Lett. 2006 Aug;6(8):1794-807.

PMID:
16895376
15.

Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells.

Alarifi S, Ali D, Y AO, Ahamed M, Siddiqui MA, Al-Khedhairy AA.

Int J Nanomedicine. 2013;8:189-199. doi: 10.2147/IJN.S37924. Epub 2013 Jan 8.

16.

Vitamin C modulation of H2O2-induced damage and iron homeostasis in human cells.

Duarte TL, Jones GD.

Free Radic Biol Med. 2007 Oct 15;43(8):1165-75. Epub 2007 Jul 19.

PMID:
17854712
17.

Inter-related in vitro effects of androgens, fatty acids and oxidative stress in prostate cancer: a mechanistic model supporting prevention strategies.

Lin H, Lu JP, Laflamme P, Qiao S, Shayegan B, Bryskin I, Monardo L, Wilson BC, Singh G, Pinthus JH.

Int J Oncol. 2010 Oct;37(4):761-6.

PMID:
20811696
18.

Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents.

Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, Ulicna O, Kucharsk√° J, Dusinska M.

Nanotoxicology. 2015 May;9 Suppl 1:95-105. doi: 10.3109/17435390.2013.815285.

PMID:
23763576
19.

Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing.

Yang YC, Wang YT, Tseng WL.

ACS Appl Mater Interfaces. 2017 Mar 22;9(11):10069-10077. doi: 10.1021/acsami.6b15654. Epub 2017 Mar 8.

PMID:
28233488
20.

Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts.

Alili L, Chapiro S, Marten GU, Schmidt AM, Zanger K, Brenneisen P.

Biomed Res Int. 2015;2015:530957. doi: 10.1155/2015/530957. Epub 2015 May 21.

Supplemental Content

Support Center