Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W.

Theberge S, Semlali A, Alamri A, Leung KP, Rouabhia M.

BMC Microbiol. 2013 Nov 7;13:246. doi: 10.1186/1471-2180-13-246.

2.

Purpurin suppresses Candida albicans biofilm formation and hyphal development.

Tsang PW, Bandara HM, Fong WP.

PLoS One. 2012;7(11):e50866. doi: 10.1371/journal.pone.0050866. Epub 2012 Nov 30.

3.

Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

Haque F, Alfatah M, Ganesan K, Bhattacharyya MS.

Sci Rep. 2016 Mar 31;6:23575. doi: 10.1038/srep23575.

4.

Antimicrobial decapeptide KSL-W attenuates Candida albicans virulence by modulating its effects on Toll-like receptor, human β-defensin, and cytokine expression by engineered human oral mucosa.

Semlali A, Leung KP, Curt S, Rouabhia M.

Peptides. 2011 May;32(5):859-67. doi: 10.1016/j.peptides.2011.01.020. Epub 2011 Feb 2.

PMID:
21291939
5.

Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

James KM, MacDonald KW, Chanyi RM, Cadieux PA, Burton JP.

J Med Microbiol. 2016 Apr;65(4):328-36. doi: 10.1099/jmm.0.000226. Epub 2016 Feb 3.

PMID:
26847045
6.

Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm.

Liu Y, Wang L, Zhou X, Hu S, Zhang S, Wu H.

Int J Antimicrob Agents. 2011 Jan;37(1):33-8. doi: 10.1016/j.ijantimicag.2010.08.014. Epub 2010 Oct 17.

PMID:
20956070
7.

Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.

Sun L, Liao K, Wang D.

PLoS One. 2015 Feb 24;10(2):e0117695. doi: 10.1371/journal.pone.0117695. eCollection 2015.

8.

Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria.

Gawande PV, Leung KP, Madhyastha S.

Curr Microbiol. 2014 May;68(5):635-41. doi: 10.1007/s00284-014-0519-6. Epub 2014 Jan 21.

PMID:
24445333
9.

Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans.

Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D.

PLoS One. 2014 May 5;9(5):e93225. doi: 10.1371/journal.pone.0093225. eCollection 2014.

10.

The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

Hsu CC, Lai WL, Chuang KC, Lee MH, Tsai YC.

Med Mycol. 2013 Jul;51(5):473-82. doi: 10.3109/13693786.2012.743051. Epub 2012 Dec 4.

PMID:
23210679
11.

Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.

Messier C, Epifano F, Genovese S, Grenier D.

Phytomedicine. 2011 Mar 15;18(5):380-3. doi: 10.1016/j.phymed.2011.01.013. Epub 2011 Feb 25.

PMID:
21353508
12.

Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ.

J Med Microbiol. 2011 Sep;60(Pt 9):1241-7. doi: 10.1099/jmm.0.030692-0. Epub 2011 Apr 7.

PMID:
21474609
14.

Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M.

PLoS One. 2010 Aug 10;5(8):e12050. doi: 10.1371/journal.pone.0012050.

15.

Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

Bandara HM, K Cheung BP, Watt RM, Jin LJ, Samaranayake LP.

Mol Oral Microbiol. 2013 Feb;28(1):54-69. doi: 10.1111/omi.12006. Epub 2012 Oct 12.

PMID:
23194472
16.

Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections.

Scarsini M, Tomasinsig L, Arzese A, D'Este F, Oro D, Skerlavaj B.

Peptides. 2015 Sep;71:211-21. doi: 10.1016/j.peptides.2015.07.023. Epub 2015 Jul 31.

PMID:
26238597
17.

Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression.

Semlali A, Killer K, Alanazi H, Chmielewski W, Rouabhia M.

BMC Microbiol. 2014 Mar 12;14:61. doi: 10.1186/1471-2180-14-61.

18.

Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.

Watamoto T, Samaranayake LP, Jayatilake JA, Egusa H, Yatani H, Seneviratne CJ.

Int J Antimicrob Agents. 2009 Oct;34(4):333-9. doi: 10.1016/j.ijantimicag.2009.03.008. Epub 2009 Apr 18.

PMID:
19376687
19.

Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial.

Samaranayake YH, Cheung BP, Yau JY, Yeung SK, Samaranayake LP.

PLoS One. 2013 May 21;8(5):e62902. doi: 10.1371/journal.pone.0062902. Print 2013.

20.

Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans.

Padmavathi AR, Bakkiyaraj D, Thajuddin N, Pandian SK.

Biofouling. 2015;31(7):565-74. doi: 10.1080/08927014.2015.1077383.

PMID:
26299260

Supplemental Content

Support Center