Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 252

1.

Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.

Edwards WB, Schnitzer TJ, Troy KL.

Osteoporos Int. 2014 Mar;25(3):1005-15. doi: 10.1007/s00198-013-2557-5. Epub 2013 Nov 5.

PMID:
24190426
2.

Bone mineral loss at the proximal femur in acute spinal cord injury.

Edwards WB, Schnitzer TJ, Troy KL.

Osteoporos Int. 2013 Sep;24(9):2461-9. doi: 10.1007/s00198-013-2323-8. Epub 2013 Mar 7.

PMID:
23468075
3.

Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.

Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB.

Bone. 2015 May;74:69-75. doi: 10.1016/j.bone.2015.01.005. Epub 2015 Jan 14.

PMID:
25596521
4.

Regional cortical and trabecular bone loss after spinal cord injury.

Dudley-Javoroski S, Shields RK.

J Rehabil Res Dev. 2012;49(9):1365-76.

5.

Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury.

Edwards WB, Simonian N, Troy KL, Schnitzer TJ.

J Bone Miner Res. 2015 Aug;30(8):1422-30. doi: 10.1002/jbmr.2474. Epub 2015 May 21.

6.

Exploring the determinants of fracture risk among individuals with spinal cord injury.

Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM.

Osteoporos Int. 2014 Jan;25(1):177-85. doi: 10.1007/s00198-013-2419-1. Epub 2013 Jun 28.

7.

Reduction in proximal femoral strength in patients with acute spinal cord injury.

Edwards WB, Schnitzer TJ, Troy KL.

J Bone Miner Res. 2014 Sep;29(9):2074-9. doi: 10.1002/jbmr.2227.

8.

Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.

Dudley-Javoroski S, Petrie MA, McHenry CL, Amelon RE, Saha PK, Shields RK.

Osteoporos Int. 2016 Mar;27(3):1149-1160. doi: 10.1007/s00198-015-3326-4. Epub 2015 Sep 22.

9.

Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients.

Varzi D, Coupaud SA, Purcell M, Allan DB, Gregory JS, Barr RJ.

Bone. 2015 Dec;81:495-501. doi: 10.1016/j.bone.2015.08.026. Epub 2015 Sep 2.

PMID:
26341577
10.

Changes in the structural and material properties of the tibia in patients with spinal cord injury.

McCarthy ID, Bloomer Z, Gall A, Keen R, Ferguson-Pell M.

Spinal Cord. 2012 Apr;50(4):333-7. doi: 10.1038/sc.2011.143. Epub 2011 Nov 29.

PMID:
22124349
11.

The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury.

Edwards WB, Schnitzer TJ, Troy KL.

Bone. 2014 Mar;60:141-7. doi: 10.1016/j.bone.2013.12.012. Epub 2013 Dec 17.

12.

Bone mineral density after spinal cord injury: a reliable method for knee measurement.

Shields RK, Schlechte J, Dudley-Javoroski S, Zwart BD, Clark SD, Grant SA, Mattiace VM.

Arch Phys Med Rehabil. 2005 Oct;86(10):1969-73.

13.

Trabecular bone microarchitecture is deteriorated in men with spinal cord injury.

Modlesky CM, Majumdar S, Narasimhan A, Dudley GA.

J Bone Miner Res. 2004 Jan;19(1):48-55.

14.

Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia.

Coupaud S, McLean AN, Allan DB.

Skeletal Radiol. 2009 Oct;38(10):989-95. doi: 10.1007/s00256-009-0674-1. Epub 2009 Mar 10.

PMID:
19277646
15.

Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury.

Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, Davis SA, Garshick E.

Arch Phys Med Rehabil. 2009 May;90(5):827-31. doi: 10.1016/j.apmr.2008.12.004.

16.

Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).

Frotzler A, Berger M, Knecht H, Eser P.

Bone. 2008 Sep;43(3):549-55. doi: 10.1016/j.bone.2008.05.006. Epub 2008 May 16.

PMID:
18567554
17.

Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study.

Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM.

J Bone Miner Metab. 2015 Jul;33(4):410-21. doi: 10.1007/s00774-014-0602-x. Epub 2014 Aug 27.

PMID:
25158630
18.

Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury.

Garland DE, Adkins RH, Scott M, Singh H, Massih M, Stewart C.

J Spinal Cord Med. 2004;27(3):207-11.

PMID:
15478521
19.

Three-dimensional structural analysis of the proximal femur in an age-stratified sample of women.

Nicks KM, Amin S, Melton LJ 3rd, Atkinson EJ, McCready LK, Riggs BL, Engelke K, Khosla S.

Bone. 2013 Jul;55(1):179-88. doi: 10.1016/j.bone.2013.02.009. Epub 2013 Feb 26.

20.

Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB.

Bone. 2010 Apr;46(4):977-84. doi: 10.1016/j.bone.2009.12.033. Epub 2010 Jan 6.

Supplemental Content

Support Center