Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Application of DNA chip scanning technology for automatic detection of Chlamydia trachomatis and Chlamydia pneumoniae inclusions.

Bogdanov A, Endrész V, Urbán S, Lantos I, Deák J, Burián K, Önder K, Ayaydin F, Balázs P, Virok DP.

Antimicrob Agents Chemother. 2014;58(1):405-13. doi: 10.1128/AAC.01400-13. Epub 2013 Nov 4.

2.

High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells.

Eszik I, Lantos I, Önder K, Somogyvári F, Burián K, Endrész V, Virok DP.

J Microbiol Methods. 2016 Jan;120:15-22. doi: 10.1016/j.mimet.2015.11.010. Epub 2015 Nov 11.

PMID:
26578244
4.

A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.

Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD.

Cell Microbiol. 2000 Feb;2(1):35-47.

PMID:
11207561
5.
6.
7.

Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.

Rahman MA, Azuma Y, Fukunaga H, Murakami T, Sugi K, Fukushi H, Miura K, Suzuki H, Shirai M.

J Antimicrob Chemother. 2005 Nov;56(5):861-8. Epub 2005 Sep 19.

PMID:
16172105
8.
11.

Growth cycle-dependent pharmacodynamics of antichlamydial drugs.

Siewert K, Rupp J, Klinger M, Solbach W, Gieffers J.

Antimicrob Agents Chemother. 2005 May;49(5):1852-6.

12.

Detection and differentiation of chlamydiae by fluorescence in situ hybridization.

Poppert S, Essig A, Marre R, Wagner M, Horn M.

Appl Environ Microbiol. 2002 Aug;68(8):4081-9.

13.

Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions.

Matsumoto A, Bessho H, Uehira K, Suda T.

J Electron Microsc (Tokyo). 1991 Oct;40(5):356-63.

PMID:
1666645
14.

The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis.

Park N, Yamanaka K, Tran D, Chandrangsu P, Akers JC, de Leon JC, Morrissette NS, Selsted ME, Tan M.

J Antimicrob Chemother. 2009 Jan;63(1):115-23. doi: 10.1093/jac/dkn436. Epub 2008 Oct 27.

15.

Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway.

Pokrovskaya ID, Szwedo JW, Goodwin A, Lupashina TV, Nagarajan UM, Lupashin VV.

Cell Microbiol. 2012 May;14(5):656-68. doi: 10.1111/j.1462-5822.2012.01747.x. Epub 2012 Feb 15.

16.

Micromanipulation of the Chlamydia pneumoniae inclusion: implications for cloning and host-pathogen interactions.

Gieffers J, Tamplin V, Maass M, Belland RJ, Caldwell HD.

FEMS Microbiol Lett. 2003 Sep 12;226(1):45-9.

17.

Development of secondary inclusions in cells infected by Chlamydia trachomatis.

Suchland RJ, Rockey DD, Weeks SK, Alzhanov DT, Stamm WE.

Infect Immun. 2005 Jul;73(7):3954-62.

18.

PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis.

Rasmussen SJ, Douglas FP, Timms P.

Mol Cell Probes. 1992 Oct;6(5):389-94.

PMID:
1361961
19.

Low iron availability modulates the course of Chlamydia pneumoniae infection.

Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF.

Cell Microbiol. 2001 Jun;3(6):427-37.

PMID:
11422085
20.

Characterization of in vitro chlamydial cultures in low-oxygen atmospheres.

Juul N, Jensen H, Hvid M, Christiansen G, Birkelund S.

J Bacteriol. 2007 Sep;189(18):6723-6. Epub 2007 Jul 13.

Supplemental Content

Support Center