Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Synchrotron X-ray nanomechanical imaging of mineralized fiber composites.

Karunaratne A, Terrill NJ, Gupta HS.

Methods Enzymol. 2013;532:415-73. doi: 10.1016/B978-0-12-416617-2.00019-9.

PMID:
24188778
2.

Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging.

Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, Terrill NJ, Williams GR, Brown MA, Croucher PI, Brown SD, Cox RD, Barber AH, Thakker RV, Gupta HS.

J Bone Miner Res. 2012 Apr;27(4):876-90. doi: 10.1002/jbmr.1495.

3.

Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis.

Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, Terrill NJ, Brown SD, Cox RD, Thakker RV, Gupta HS.

Bone. 2016 Mar;84:15-24. doi: 10.1016/j.bone.2015.11.019. Epub 2015 Dec 2.

4.

A new model to simulate the elastic properties of mineralized collagen fibril.

Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC.

Biomech Model Mechanobiol. 2011 Apr;10(2):147-60. doi: 10.1007/s10237-010-0223-9. Epub 2010 Jun 3.

PMID:
20521160
5.

Cooperative deformation of mineral and collagen in bone at the nanoscale.

Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17741-6. Epub 2006 Nov 9.

6.

Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.

Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F.

Acta Biomater. 2013 Sep;9(9):8118-27. doi: 10.1016/j.actbio.2013.05.015. Epub 2013 May 23.

PMID:
23707503
7.

Cooperation of length scales and orientations in the deformation of bovine bone.

Hoo RP, Fratzl P, Daniels JE, Dunlop JW, Honkimäki V, Hoffman M.

Acta Biomater. 2011 Jul;7(7):2943-51. doi: 10.1016/j.actbio.2011.02.017. Epub 2011 Feb 24.

PMID:
21354341
8.

Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.

Gautieri A, Vesentini S, Redaelli A, Buehler MJ.

Nano Lett. 2011 Feb 9;11(2):757-66. doi: 10.1021/nl103943u. Epub 2011 Jan 5.

PMID:
21207932
9.

Nanoscale deformation mechanisms in bone.

Gupta HS, Wagermaier W, Zickler GA, Raz-Ben Aroush D, Funari SS, Roschger P, Wagner HD, Fratzl P.

Nano Lett. 2005 Oct;5(10):2108-11.

PMID:
16218747
10.

Symmetrically reduced stiffness and increased extensibility in compression and tension at the mineralized fibrillar level in rachitic bone.

Karunaratne A, Boyde A, Esapa CT, Hiller J, Terrill NJ, Brown SD, Cox RD, Thakker RV, Gupta HS.

Bone. 2013 Feb;52(2):689-98. doi: 10.1016/j.bone.2012.10.029. Epub 2012 Nov 3.

PMID:
23128355
11.

Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains.

Sui T, Lunt AJ, Baimpas N, Sandholzer MA, Hu J, Dolbnya IP, Landini G, Korsunsky AM.

Acta Biomater. 2014 Jan;10(1):343-54. doi: 10.1016/j.actbio.2013.09.043. Epub 2013 Oct 9.

12.

Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions.

Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, Vettorazzi E, Acevedo C, Hahn M, Püschel K, Tang S, Amling M, Ritchie RO, Busse B.

Sci Rep. 2016 Feb 16;6:21072. doi: 10.1038/srep21072.

13.

Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation.

Sui T, Sandholzer MA, Baimpas N, Dolbnya IP, Landini G, Korsunsky AM.

J Struct Biol. 2013 Nov;184(2):136-46. doi: 10.1016/j.jsb.2013.09.023. Epub 2013 Oct 7.

14.

Synchrotron diffraction study of deformation mechanisms in mineralized tendon.

Gupta HS, Messmer P, Roschger P, Bernstorff S, Klaushofer K, Fratzl P.

Phys Rev Lett. 2004 Oct 8;93(15):158101. Epub 2004 Oct 4.

PMID:
15524943
15.

In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering.

Schmid F, Sommer G, Rappolt M, Schulze-Bauer CA, Regitnig P, Holzapfel GA, Laggner P, Amenitsch H.

J Synchrotron Radiat. 2005 Nov;12(Pt 6):727-33. Epub 2005 Oct 18.

PMID:
16239740
16.

Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism.

Krauss S, Fratzl P, Seto J, Currey JD, Estevez JA, Funari SS, Gupta HS.

Bone. 2009 Jun;44(6):1105-10. doi: 10.1016/j.bone.2009.02.009. Epub 2009 Feb 21.

PMID:
19236962
17.

Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.

Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC.

Acta Biomater. 2012 Jan;8(1):253-61. doi: 10.1016/j.actbio.2011.08.014. Epub 2011 Aug 22.

PMID:
21878399
18.

In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy.

Hang F, Lu D, Bailey RJ, Jimenez-Palomar I, Stachewicz U, Cortes-Ballesteros B, Davies M, Zech M, Bödefeld C, Barber AH.

Nanotechnology. 2011 Sep 7;22(36):365708. doi: 10.1088/0957-4484/22/36/365708. Epub 2011 Aug 16.

PMID:
21844643
19.

Mechanical adaptability of the Bouligand-type structure in natural dermal armour.

Zimmermann EA, Gludovatz B, Schaible E, Dave NK, Yang W, Meyers MA, Ritchie RO.

Nat Commun. 2013;4:2634. doi: 10.1038/ncomms3634.

PMID:
24129554
20.

In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques.

Giri B, Almer JD, Dong XN, Wang X.

J Mech Behav Biomed Mater. 2012 Oct;14:101-12. doi: 10.1016/j.jmbbm.2012.05.003. Epub 2012 May 23.

Supplemental Content

Support Center