Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

In situ solution study of calcium phosphate crystallization kinetics.

Pan H, Jiang S, Zhang T, Tang R.

Methods Enzymol. 2013;532:129-44. doi: 10.1016/B978-0-12-416617-2.00006-0.

PMID:
24188765
2.

Mineral phases of calcium phosphate.

Nancollas GH, LoRe M, Perez L, Richardson C, Zawacki SJ.

Anat Rec. 1989 Jun;224(2):234-41. Review.

PMID:
2672888
3.

The influence of surface active molecules on the crystallization of biominerals in solution.

Sikirić MD, Füredi-Milhofer H.

Adv Colloid Interface Sci. 2006 Dec 21;128-130:135-58. Epub 2007 Jan 23. Review.

PMID:
17254533
4.
5.

Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls.

Wang L, Nancollas GH.

Dalton Trans. 2009 Apr 21;(15):2665-72. doi: 10.1039/b815887h. Epub 2009 Feb 7. Review.

PMID:
19333487
6.

Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.

Wang L, Ruiz-Agudo E, Putnis CV, Menneken M, Putnis A.

Environ Sci Technol. 2012 Jan 17;46(2):834-42. doi: 10.1021/es202924f. Epub 2011 Dec 22.

PMID:
22136106
7.

Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation.

Habelitz S, Denbesten PK, Marshall SJ, Marshall GW, Li W.

Orthod Craniofac Res. 2005 Nov;8(4):232-8.

PMID:
16238603
8.

Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway.

Jiang S, Pan H, Chen Y, Xu X, Tang R.

Faraday Discuss. 2015;179:451-61. doi: 10.1039/c4fd00212a. Epub 2015 Apr 16.

PMID:
25876510
9.

Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization.

Jiang W, Chu X, Wang B, Pan H, Xu X, Tang R.

J Phys Chem B. 2009 Aug 6;113(31):10838-44. doi: 10.1021/jp904633f.

PMID:
19591436
10.

Effects of LDL, cholesterol, and their oxidized forms on the precipitation kinetics of calcium phosphates.

Wang HP, Feng XJ, Gou BD, Zhang TL, Xu SJ, Wang K.

Clin Chem. 2003 Dec;49(12):2027-36.

11.

The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces.

Nancollas GH, Tsortos A, Zieba A.

Scanning Microsc. 1996;10(2):499-507; discussion 508.

PMID:
9813627
12.

Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices.

Veis A, Dorvee JR.

Calcif Tissue Int. 2013 Oct;93(4):307-15. doi: 10.1007/s00223-012-9678-2. Epub 2012 Dec 16. Review.

14.

New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution.

Bleek K, Taubert A.

Acta Biomater. 2013 May;9(5):6283-321. doi: 10.1016/j.actbio.2012.12.027. Epub 2013 Jan 3. Review. Erratum in: Acta Biomater. 2013 Sep;9(9):8466.

PMID:
23291492
15.

Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.

Chow LC, Markovic M, Frukhtbeyn SA, Takagi S.

Biomaterials. 2005 Feb;26(4):393-401.

PMID:
15275813
16.

Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH.

Mekmene O, Rouillon T, Quillard S, Pilet P, Bouler JM, Pezennec S, Gaucheron F.

J Dairy Res. 2012 May;79(2):238-48. doi: 10.1017/S0022029912000076.

PMID:
22559064
17.
18.
19.

Effect of solution pH on the calcium phosphates formation and ionic diffusion on and through the collagenous matrix.

Iijima MY, Moriwaki Y, Yamaguchi R, Kuboki Y.

Connect Tissue Res. 1997;36(2):73-83.

PMID:
9298625
20.

Supplemental Content

Support Center