Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Investigation of biochemical diversity in a soybean lineage representing 35 years of breeding.

Harrigan GG, Culler AH, Culler M, Breeze ML, Berman KH, Halls SC, Harrison JM.

J Agric Food Chem. 2013 Nov 13;61(45):10807-15. doi: 10.1021/jf4032102. Epub 2013 Nov 4.

PMID:
24188091
2.

Chemical composition of glyphosate-tolerant soybean 40-3-2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.).

Harrigan GG, Ridley WP, Riordan SG, Nemeth MA, Sorbet R, Trujillo WA, Breeze ML, Schneider RW.

J Agric Food Chem. 2007 Jul 25;55(15):6160-8. Epub 2007 Jul 3.

PMID:
17608426
3.

Composition of grain, forage, and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.).

Lundry DR, Ridley WP, Meyer JJ, Riordan SG, Nemeth MA, Trujillo WA, Breeze ML, Sorbet R.

J Agric Food Chem. 2008 Jun 25;56(12):4611-22. doi: 10.1021/jf073087h. Epub 2008 May 23.

PMID:
18498166
4.

Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max).

Berman KH, Harrigan GG, Riordan SG, Nemeth MA, Hanson C, Smith M, Sorbet R, Zhu E, Ridley WP.

J Agric Food Chem. 2010 May 26;58(10):6270-6. doi: 10.1021/jf1003978.

PMID:
20420455
5.
6.

Compositional variability in conventional and glyphosate-tolerant soybean (Glycine max L.) varieties grown in different regions in Brazil.

Zhou J, Berman KH, Breeze ML, Nemeth MA, Oliveira WS, Braga DP, Berger GU, Harrigan GG.

J Agric Food Chem. 2011 Nov 9;59(21):11652-6. doi: 10.1021/jf202781v. Epub 2011 Oct 10.

PMID:
21879730
7.

Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

Harrigan GG, Skogerson K, MacIsaac S, Bickel A, Perez T, Li X.

J Agric Food Chem. 2015 May 13;63(18):4690-7. doi: 10.1021/acs.jafc.5b01069. Epub 2015 May 5.

PMID:
25940152
8.

Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate.

Taylor NB, Fuchs RL, MacDonald J, Shariff AR, Padgette SR.

J Agric Food Chem. 1999 Oct;47(10):4469-73.

PMID:
10552835
9.

The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans.

Padgette SR, Taylor NB, Nida DL, Bailey MR, MacDonald J, Holden LR, Fuchs RL.

J Nutr. 1996 Mar;126(3):702-16.

PMID:
8598556
10.

Compositions of seed, forage, and processed fractions from insect-protected soybean MON 87701 are equivalent to those of conventional soybean.

Berman KH, Harrigan GG, Riordan SG, Nemeth MA, Hanson C, Smith M, Sorbet R, Zhu E, Ridley WP.

J Agric Food Chem. 2009 Dec 9;57(23):11360-9. doi: 10.1021/jf902955r.

PMID:
19891479
11.

Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

Bennett JO, Yu O, Heatherly LG, Krishnan HB.

J Agric Food Chem. 2004 Dec 15;52(25):7574-9.

PMID:
15675806
12.

Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 × MON 89788 to conventional soybean extends across different world regions and multiple growing seasons.

Berman KH, Harrigan GG, Nemeth MA, Oliveira WS, Berger GU, Tagliaferro FS.

J Agric Food Chem. 2011 Nov 9;59(21):11643-51. doi: 10.1021/jf202782z. Epub 2011 Oct 10.

PMID:
21985102
13.

Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

Maria John KM, Natarajan S, Luthria DL.

Food Chem. 2016 Nov 15;211:347-55. doi: 10.1016/j.foodchem.2016.05.055. Epub 2016 May 10.

PMID:
27283642
14.

Effect of six decades of selective breeding on soybean protein composition and quality: a biochemical and molecular analysis.

Mahmoud AA, Natarajan SS, Bennett JO, Mawhinney TP, Wiebold WJ, Krishnan HB.

J Agric Food Chem. 2006 May 31;54(11):3916-22.

PMID:
16719515
15.

Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment.

Aussenac T, Lacombe S, Daydé J.

Am J Clin Nutr. 1998 Dec;68(6 Suppl):1480S-1485S.

PMID:
9848520
16.

Compositional equivalence of DAS-444Ø6-6 (AAD-12 + 2mEPSPS + PAT) herbicide-tolerant soybean and nontransgenic soybean.

Lepping MD, Herman RA, Potts BL.

J Agric Food Chem. 2013 Nov 20;61(46):11180-90. doi: 10.1021/jf403775d. Epub 2013 Nov 5.

PMID:
24191699
17.

Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

Yuan FJ, Zhu DH, Deng B, Fu XJ, Dong DK, Zhu SL, Li BQ, Shu QY.

J Agric Food Chem. 2009 May 13;57(9):3632-8. doi: 10.1021/jf803862a.

PMID:
19323582
18.

Stability in the composition equivalence of grain from insect-protected maize and seed from glyphosate-tolerant soybean to conventional counterparts over multiple seasons, locations, and breeding germplasms.

Zhou J, Harrigan GG, Berman KH, Webb EG, Klusmeyer TH, Nemeth MA.

J Agric Food Chem. 2011 Aug 24;59(16):8822-8. doi: 10.1021/jf2019038. Epub 2011 Jul 28.

PMID:
21797257
19.

Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

Eskandari M, Cober ER, Rajcan I.

Theor Appl Genet. 2013 Jun;126(6):1677-87. doi: 10.1007/s00122-013-2083-z. Epub 2013 Mar 28.

PMID:
23536049
20.

Impact of genetics and environment on nutritional and metabolite components of maize grain.

Harrigan GG, Stork LG, Riordan SG, Reynolds TL, Ridley WP, Masucci JD, Macisaac S, Halls SC, Orth R, Smith RG, Wen L, Brown WE, Welsch M, Riley R, McFarland D, Pandravada A, Glenn KC.

J Agric Food Chem. 2007 Jul 25;55(15):6177-85. Epub 2007 Jul 3.

PMID:
17608428

Supplemental Content

Support Center