Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin.

Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O'Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR.

Nat Med. 2013 Dec;19(12):1649-54. doi: 10.1038/nm.3372. Epub 2013 Nov 3.

2.

AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice.

O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, Smith BK, Pulinilkunnil T, Chen Z, Samaan MC, Jorgensen SB, Dyck JR, Holloway GP, Hawke TJ, van Denderen BJ, Kemp BE, Steinberg GR.

Diabetologia. 2014 Aug;57(8):1693-702. doi: 10.1007/s00125-014-3273-1. Epub 2014 Jun 10.

PMID:
24913514
3.

AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation.

Zordoky BN, Nagendran J, Pulinilkunnil T, Kienesberger PC, Masson G, Waller TJ, Kemp BE, Steinberg GR, Dyck JR.

Circ Res. 2014 Aug 15;115(5):518-24. doi: 10.1161/CIRCRESAHA.115.304538. Epub 2014 Jul 7.

4.
5.

Metformin decreases high-fat diet-induced renal injury by regulating the expression of adipokines and the renal AMP-activated protein kinase/acetyl-CoA carboxylase pathway in mice.

Kim D, Lee JE, Jung YJ, Lee AS, Lee S, Park SK, Kim SH, Park BH, Kim W, Kang KP.

Int J Mol Med. 2013 Dec;32(6):1293-302. doi: 10.3892/ijmm.2013.1508. Epub 2013 Sep 25.

PMID:
24068196
6.

Metformin trims fats to restore insulin sensitivity.

Shaw RJ.

Nat Med. 2013 Dec;19(12):1570-2. doi: 10.1038/nm.3414. No abstract available.

PMID:
24309653
7.

FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis.

Mottillo EP, Desjardins EM, Fritzen AM, Zou VZ, Crane JD, Yabut JM, Kiens B, Erion DM, Lanba A, Granneman JG, Talukdar S, Steinberg GR.

Mol Metab. 2017 Apr 5;6(6):471-481. doi: 10.1016/j.molmet.2017.04.001. eCollection 2017 Jun.

8.

Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise.

O'Neill HM, Lally JS, Galic S, Pulinilkunnil T, Ford RJ, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR.

Physiol Rep. 2015 Jul;3(7). pii: e12444. doi: 10.14814/phy2.12444.

9.

Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity.

Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, Bujak AL, Smith BK, Crane JD, Blümer RM, Marcinko K, Kemp BE, Gerstein HC, Steinberg GR.

Biochem J. 2015 May 15;468(1):125-32. doi: 10.1042/BJ20150125.

10.

Activation of AMP-activated Protein Kinase by Metformin Induces Protein Acetylation in Prostate and Ovarian Cancer Cells.

Galdieri L, Gatla H, Vancurova I, Vancura A.

J Biol Chem. 2016 Nov 25;291(48):25154-25166. Epub 2016 Oct 12.

11.

AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells.

Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA.

J Biol Chem. 2004 Nov 12;279(46):47898-905. Epub 2004 Sep 14.

12.

Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

O'Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, Kemp BE, Tsakiridis T, Muti P, Steinberg GR.

Biochem J. 2015 Jul 15;469(2):177-87. doi: 10.1042/BJ20150122. Epub 2015 May 5.

PMID:
25940306
13.

TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin.

Louden ED, Luzzo KM, Jimenez PT, Chi T, Chi M, Moley KH.

Reprod Fertil Dev. 2014 Dec;27(1):31-9. doi: 10.1071/RD14339.

14.

AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.

Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jørgensen SB, Lynch GS, Kemp BE, Steinberg GR.

J Physiol. 2008 Dec 1;586(23):5819-31. doi: 10.1113/jphysiol.2008.159814. Epub 2008 Oct 9.

15.

Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.

Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, Bhanot S, Monia BP, Shulman GI.

J Clin Invest. 2006 Mar;116(3):817-24. Epub 2006 Feb 16.

16.

Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.

Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc Cc, Itani SI, Lodish HF, Ruderman NB.

Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16309-13. Epub 2002 Nov 27.

17.

Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.

Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ.

Science. 2001 Mar 30;291(5513):2613-6.

18.

Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice.

Glund S, Schoelch C, Thomas L, Niessen HG, Stiller D, Roth GJ, Neubauer H.

Diabetologia. 2012 Jul;55(7):2044-53. doi: 10.1007/s00125-012-2554-9. Epub 2012 Apr 25.

PMID:
22532389
19.

Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner.

Rattan R, Giri S, Hartmann LC, Shridhar V.

J Cell Mol Med. 2011 Jan;15(1):166-78. doi: 10.1111/j.1582-4934.2009.00954.x.

20.

Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets.

Abu-Elheiga L, Oh W, Kordari P, Wakil SJ.

Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10207-12. Epub 2003 Aug 14.

Supplemental Content

Support Center