Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Bayesian peak picking for NMR spectra.

Cheng Y, Gao X, Liang F.

Genomics Proteomics Bioinformatics. 2014 Feb;12(1):39-47. doi: 10.1016/j.gpb.2013.07.003. Epub 2013 Oct 31.

2.

Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

Yoon JW.

Comput Biol Med. 2014 Nov;54:89-99. doi: 10.1016/j.compbiomed.2014.08.016. Epub 2014 Aug 24.

PMID:
25218584
3.

BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.

Hao J, Astle W, De Iorio M, Ebbels TM.

Bioinformatics. 2012 Aug 1;28(15):2088-90. doi: 10.1093/bioinformatics/bts308. Epub 2012 May 26.

PMID:
22635605
4.
5.

APART: automated preprocessing for NMR assignments with reduced tedium.

Pawley NH, Gans JD, Michalczyk R.

Bioinformatics. 2005 Mar 1;21(5):680-2. Epub 2004 Sep 23.

PMID:
15388520
6.

Automatic peak selection by a Benjamini-Hochberg-based algorithm.

Abbas A, Kong XB, Liu Z, Jing BY, Gao X.

PLoS One. 2013;8(1):e53112. doi: 10.1371/journal.pone.0053112. Epub 2013 Jan 7.

7.

WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering.

Liu Z, Abbas A, Jing BY, Gao X.

Bioinformatics. 2012 Apr 1;28(7):914-20. doi: 10.1093/bioinformatics/bts078. Epub 2012 Feb 10.

8.

PICKY: a novel SVD-based NMR spectra peak picking method.

Alipanahi B, Gao X, Karakoc E, Donaldson L, Li M.

Bioinformatics. 2009 Jun 15;25(12):i268-75. doi: 10.1093/bioinformatics/btp225.

9.

Bayesian phylogeny analysis via stochastic approximation Monte Carlo.

Cheon S, Liang F.

Mol Phylogenet Evol. 2009 Nov;53(2):394-403. doi: 10.1016/j.ympev.2009.06.019. Epub 2009 Jul 7.

PMID:
19589389
10.

An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming.

Abbas A, Guo X, Jing BY, Gao X.

J Biomol NMR. 2014 Jun;59(2):75-86. doi: 10.1007/s10858-014-9828-0. Epub 2014 Apr 19.

PMID:
24748536
11.

Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY.

Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K.

J Magn Reson. 1998 Dec;135(2):288-97.

PMID:
9878459
12.

Automated protein structure calculation from NMR data.

Williamson MP, Craven CJ.

J Biomol NMR. 2009 Mar;43(3):131-43. doi: 10.1007/s10858-008-9295-6. Epub 2009 Jan 10.

PMID:
19137264
13.

Computer vision-based automated peak picking applied to protein NMR spectra.

Klukowski P, Walczak MJ, Gonczarek A, Boudet J, Wider G.

Bioinformatics. 2015 Sep 15;31(18):2981-8. doi: 10.1093/bioinformatics/btv318. Epub 2015 May 20.

PMID:
25995228
14.

On the reliability of NMR relaxation data analyses: a Markov Chain Monte Carlo approach.

Abergel D, Volpato A, Coutant EP, Polimeno A.

J Magn Reson. 2014 Sep;246:94-103. doi: 10.1016/j.jmr.2014.07.007. Epub 2014 Jul 26.

PMID:
25117152
15.

A general algorithm for peak-tracking in multi-dimensional NMR experiments.

Ravel P, Kister G, Malliavin TE, Delsuc MA.

J Biomol NMR. 2007 Apr;37(4):265-75. Epub 2007 Feb 10.

PMID:
17294057
16.

Protein structure elucidation from minimal NMR data: the CLOUDS approach.

Grishaev A, Llinás M.

Methods Enzymol. 2005;394:261-95.

PMID:
15808224
17.

Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

Yang Y, Fritzsching KJ, Hong M.

J Biomol NMR. 2013 Nov;57(3):281-96. doi: 10.1007/s10858-013-9788-9. Epub 2013 Oct 17.

18.

Replica-exchange Monte Carlo scheme for bayesian data analysis.

Habeck M, Nilges M, Rieping W.

Phys Rev Lett. 2005 Jan 14;94(1):018105. Epub 2005 Jan 11.

PMID:
15698139
19.

Automated protein structure determination from NMR spectra.

López-Méndez B, Güntert P.

J Am Chem Soc. 2006 Oct 11;128(40):13112-22.

PMID:
17017791
20.

Hierarchical Bayesian sparse image reconstruction with application to MRFM.

Dobigeon N, Hero AO, Tourneret JY.

IEEE Trans Image Process. 2009 Sep;18(9):2059-70. doi: 10.1109/TIP.2009.2024067. Epub 2009 May 29.

PMID:
19493849

Supplemental Content

Support Center