Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury.

Yu CG, Singh R, Crowdus C, Raza K, Kincer J, Geddes JW.

Neuroscience. 2014 Jan 3;256:163-9. doi: 10.1016/j.neuroscience.2013.10.039. Epub 2013 Oct 30.

2.

Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord.

Kuypers NJ, James KT, Enzmann GU, Magnuson DS, Whittemore SR.

Exp Neurol. 2013 Sep;247:615-22. doi: 10.1016/j.expneurol.2013.02.014. Epub 2013 Mar 4.

3.

Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice.

Li L, Xiong ZY, Qian ZM, Zhao TZ, Feng H, Hu S, Hu R, Ke Y, Lin J.

Neurobiol Dis. 2014 Jun;66:74-82. doi: 10.1016/j.nbd.2014.02.008. Epub 2014 Mar 6.

PMID:
24607885
4.

Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery.

Kim JH, Loy DN, Wang Q, Budde MD, Schmidt RE, Trinkaus K, Song SK.

J Neurotrauma. 2010 Mar;27(3):587-98. doi: 10.1089/neu.2009.1063.

5.

Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.

Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG.

J Neurotrauma. 2006 May;23(5):635-59.

PMID:
16689667
6.

Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery.

Patel SP, Cox DH, Gollihue JL, Bailey WM, Geldenhuys WJ, Gensel JC, Sullivan PG, Rabchevsky AG.

Exp Neurol. 2017 Jul;293:74-82. doi: 10.1016/j.expneurol.2017.03.021. Epub 2017 Mar 30.

PMID:
28365473
7.

Sildenafil improves epicenter vascular perfusion but not hindlimb functional recovery after contusive spinal cord injury in mice.

Myers SA, DeVries WH, Gruenthal MJ, Andres KR, Hagg T, Whittemore SR.

J Neurotrauma. 2012 Feb 10;29(3):528-38. doi: 10.1089/neu.2011.2036. Epub 2011 Dec 15.

8.

Nicotine attenuates morphological deficits in a contusion model of spinal cord injury.

Ravikumar R, Fugaccia I, Scheff SW, Geddes JW, Srinivasan C, Toborek M.

J Neurotrauma. 2005 Feb;22(2):240-51.

PMID:
15716630
9.

Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, Yahata K, Ito K, Shimokawa H, Itoi E.

J Neurosurg. 2014 Dec;121(6):1514-25. doi: 10.3171/2014.8.JNS132562. Epub 2014 Oct 3.

PMID:
25280090
10.

Inhibition of p21-Activated Kinase 1 by IPA-3 Promotes Locomotor Recovery After Spinal Cord Injury in Mice.

Ji X, Zhang Y, Zhang L, Chen H, Peng Y, Tang P.

Spine (Phila Pa 1976). 2016 Jun;41(11):919-25. doi: 10.1097/BRS.0000000000001491.

PMID:
26863260
11.

Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury.

Zhang B, Bailey WM, Kopper TJ, Orr MB, Feola DJ, Gensel JC.

J Neuroinflammation. 2015 Nov 24;12:218. doi: 10.1186/s12974-015-0440-3.

12.
13.

Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury.

Lee JS, Yang CC, Kuo YM, Sze CI, Hsu JY, Huang YH, Tzeng SF, Tsai CL, Chen HH, Jou IM.

Spine (Phila Pa 1976). 2012 Jan 1;37(1):10-7. doi: 10.1097/BRS.0b013e31823b0440.

PMID:
22024901
14.
15.

Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury.

Reigada D, Nieto-Díaz M, Navarro-Ruiz R, Caballero-López MJ, Del Águila A, Muñoz-Galdeano T, Maza RM.

Neuroscience. 2015 Aug 6;300:404-17. doi: 10.1016/j.neuroscience.2015.05.036. Epub 2015 May 22.

PMID:
26004679
16.
17.

Voluntary wheel running improves recovery from a moderate spinal cord injury.

Engesser-Cesar C, Anderson AJ, Basso DM, Edgerton VR, Cotman CW.

J Neurotrauma. 2005 Jan;22(1):157-71.

PMID:
15665610
18.

Deletion of the pro-apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury.

Ohri SS, Maddie MA, Zhang Y, Shields CB, Hetman M, Whittemore SR.

J Neurotrauma. 2012 Feb 10;29(3):579-88. doi: 10.1089/neu.2011.1940. Epub 2011 Nov 21.

19.

Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice.

Hill RL, Zhang YP, Burke DA, Devries WH, Zhang Y, Magnuson DS, Whittemore SR, Shields CB.

J Neurotrauma. 2009 Jan;26(1):1-15. doi: 10.1089/neu.2008.0543.

20.

Inhibition of the Ca²⁺-dependent K⁺ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury.

Bouhy D, Ghasemlou N, Lively S, Redensek A, Rathore KI, Schlichter LC, David S.

J Neurosci. 2011 Nov 9;31(45):16298-308. doi: 10.1523/JNEUROSCI.0047-11.2011.

Supplemental Content

Support Center