Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2.

Liske H, Qian X, Anikeeva P, Deisseroth K, Delp S.

Sci Rep. 2013 Oct 31;3:3110. doi: 10.1038/srep03110.

2.

Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.

Berlinguer-Palmini R, Narducci R, Merhan K, Dilaghi A, Moroni F, Masi A, Scartabelli T, Landucci E, Sili M, Schettini A, McGovern B, Maskaant P, Degenaar P, Mannaioni G.

PLoS One. 2014 Sep 29;9(9):e108689. doi: 10.1371/journal.pone.0108689. eCollection 2014.

3.

Achieving high-frequency optical control of synaptic transmission.

Jackman SL, Beneduce BM, Drew IR, Regehr WG.

J Neurosci. 2014 May 28;34(22):7704-14. doi: 10.1523/JNEUROSCI.4694-13.2014.

4.

Multi-site optical excitation using ChR2 and micro-LED array.

Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B, Berlinguer Palmini R, Gong Z, Drakakis EM, Neil MA, Dawson MD, Burrone J, Degenaar P.

J Neural Eng. 2010 Feb;7(1):16004. doi: 10.1088/1741-2560/7/1/016004. Epub 2010 Jan 14.

PMID:
20075504
5.

Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2.

Herman AM, Huang L, Murphey DK, Garcia I, Arenkiel BR.

Elife. 2014;3:e01481. doi: 10.7554/eLife.01481. Epub 2014 Jan 28.

6.

Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies.

Lu H, Yang B, Jaeger D.

Front Neural Circuits. 2016 Mar 24;10:21. doi: 10.3389/fncir.2016.00021. eCollection 2016.

7.

Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.

Fenno LE, Gunaydin LA, Deisseroth K.

Cold Spring Harb Protoc. 2015 Jun 1;2015(6):537-48. doi: 10.1101/pdb.prot075598.

PMID:
26034299
8.

Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function.

Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G.

Nat Methods. 2011 Sep;8(9):745-52.

9.

Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.

Williams JC, Entcheva E.

Biophys J. 2015 Apr 21;108(8):1934-45. doi: 10.1016/j.bpj.2015.03.032.

10.

Rewarding Effects of Optical Stimulation of Ventral Tegmental Area Glutamatergic Neurons.

Wang HL, Qi J, Zhang S, Wang H, Morales M.

J Neurosci. 2015 Dec 2;35(48):15948-54. doi: 10.1523/JNEUROSCI.3428-15.2015.

11.

Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells.

Thyagarajan S, van Wyk M, Lehmann K, Löwel S, Feng G, Wässle H.

J Neurosci. 2010 Jun 30;30(26):8745-58. doi: 10.1523/JNEUROSCI.4417-09.2010.

12.

PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording.

Lima SQ, Hromádka T, Znamenskiy P, Zador AM.

PLoS One. 2009 Jul 7;4(7):e6099. doi: 10.1371/journal.pone.0006099.

13.

Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.

Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E, Brown MC, Lee DJ.

Hear Res. 2015 Apr;322:235-41. doi: 10.1016/j.heares.2015.01.004. Epub 2015 Jan 15.

14.

Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.

Takahashi H, Sakurai T, Sakai H, Bakkum DJ, Suzurikawa J, Kanzaki R.

Biosystems. 2012 Feb;107(2):106-12. doi: 10.1016/j.biosystems.2011.10.002. Epub 2011 Oct 14.

PMID:
22019848
16.

In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.

Mateo C, Avermann M, Gentet LJ, Zhang F, Deisseroth K, Petersen CC.

Curr Biol. 2011 Oct 11;21(19):1593-602. doi: 10.1016/j.cub.2011.08.028. Epub 2011 Sep 22.

17.

Tracking stem cell differentiation in the setting of automated optogenetic stimulation.

Stroh A, Tsai HC, Wang LP, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB.

Stem Cells. 2011 Jan;29(1):78-88. doi: 10.1002/stem.558.

18.

Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.

Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC.

J Neurophysiol. 2009 Jun;101(6):3075-88. doi: 10.1152/jn.00071.2009. Epub 2009 Apr 1.

19.

Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin.

Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S.

Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17816-21. Epub 2005 Nov 23.

20.

Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.

Hayashi Y, Tagawa Y, Yawata S, Nakanishi S, Funabiki K.

Eur J Neurosci. 2012 Sep;36(6):2722-32. doi: 10.1111/j.1460-9568.2012.08191.x. Epub 2012 Jul 11.

PMID:
22780218

Supplemental Content

Support Center