Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content.

Bae S, Kim CW, Choi JS, Yang JW, Seo TS.

Anal Bioanal Chem. 2013 Nov;405(29):9365-74. doi: 10.1007/s00216-013-7389-9. Epub 2013 Oct 30.

PMID:
24170268
2.

An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients.

Kim BJ, Richter LV, Hatter N, Tung CK, Ahner BA, Wu M.

Lab Chip. 2015;15(18):3687-94. doi: 10.1039/c5lc00727e. Epub 2015 Aug 6.

PMID:
26248065
3.

Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction.

Lim HS, Kim JY, Kwak HS, Sim SJ.

Anal Chem. 2014 Sep 2;86(17):8585-92. doi: 10.1021/ac502324c. Epub 2014 Aug 12.

PMID:
25090444
4.

Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.

Holcomb RE, Mason LJ, Reardon KF, Cropek DM, Henry CS.

Anal Bioanal Chem. 2011 Apr;400(1):245-53. doi: 10.1007/s00216-011-4710-3. Epub 2011 Feb 11.

PMID:
21311874
5.

A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.

Kim HS, Devarenne TP, Han A.

Lab Chip. 2015 Jun 7;15(11):2467-75. doi: 10.1039/c4lc01316f. Epub 2015 May 5.

PMID:
25939721
6.

An integrated microfluidic device in marine microalgae culture for toxicity screening application.

Zheng G, Wang Y, Wang Z, Zhong W, Wang H, Li Y.

Mar Pollut Bull. 2013 Jul 15;72(1):231-43. doi: 10.1016/j.marpolbul.2013.03.035. Epub 2013 May 9.

PMID:
23664765
7.

Rapid and Automated Quantification of Microalgal Lipids on a Spinning Disc.

Kim Y, Jeong SN, Kim B, Kim DP, Cho YK.

Anal Chem. 2015 Aug 4;87(15):7865-71. doi: 10.1021/acs.analchem.5b01570. Epub 2015 Jul 14.

PMID:
26121222
8.

High frequency dielectrophoretic response of microalgae over time.

Hadady H, Wong JJ, Hiibel SR, Redelman D, Geiger EJ.

Electrophoresis. 2014 Dec;35(24):3533-40. doi: 10.1002/elps.201400306. Epub 2014 Nov 2.

9.

A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production.

Kim HS, Weiss TL, Thapa HR, Devarenne TP, Han A.

Lab Chip. 2014 Apr 21;14(8):1415-25. doi: 10.1039/c3lc51396c.

PMID:
24496295
10.

In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules.

Lee DH, Bae CY, Han JI, Park JK.

Anal Chem. 2013 Sep 17;85(18):8749-56. doi: 10.1021/ac401836j. Epub 2013 Sep 5.

PMID:
24007509
11.

[Low field nuclear magnetic resonance for rapid quantitation of microalgae lipid and its application in high throughput screening].

Liu T, Yang Y, Wang Z, Zhuang Y, Chu J, Guoi M.

Sheng Wu Gong Cheng Xue Bao. 2016 Mar;32(3):385-96. Chinese.

PMID:
27349121
12.

Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

Morschett H, Wiechert W, Oldiges M.

Microb Cell Fact. 2016 Feb 9;15:34. doi: 10.1186/s12934-016-0433-7.

13.

Microfluidic cell chips for high-throughput drug screening.

Chi CW, Ahmed AR, Dereli-Korkut Z, Wang S.

Bioanalysis. 2016 May;8(9):921-37. doi: 10.4155/bio-2016-0028. Epub 2016 Apr 13. Review.

14.

Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

Park JW, Na SC, Nguyen TQ, Paik SM, Kang M, Hong D, Choi IS, Lee JH, Jeon NL.

Biotechnol Bioeng. 2015 Mar;112(3):494-501. doi: 10.1002/bit.25453. Epub 2014 Oct 21.

PMID:
25220860
15.

Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.

Brennan L, Blanco Fernández A, Mostaert AS, Owende P.

J Microbiol Methods. 2012 Aug;90(2):137-43. doi: 10.1016/j.mimet.2012.03.020. Epub 2012 Apr 14.

PMID:
22521923
16.

High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells.

Ju SM, Jang HJ, Kim KB, Kim J.

J Toxicol Environ Health A. 2015;78(16):1063-72. doi: 10.1080/15287394.2015.1068650. Epub 2015 Aug 4.

PMID:
26241707
17.

A droplet microfluidics platform for rapid microalgal growth and oil production analysis.

Kim HS, Guzman AR, Thapa HR, Devarenne TP, Han A.

Biotechnol Bioeng. 2016 Aug;113(8):1691-701. doi: 10.1002/bit.25930. Epub 2016 Feb 3.

PMID:
26724784
18.

Multiplex microfluidic system integrating sequential operations of microalgal lipid production.

Kwak HS, Kim JY, Na SC, Jeon NL, Sim SJ.

Analyst. 2016 Feb 21;141(4):1218-25. doi: 10.1039/c5an02409a.

PMID:
26783562
19.

Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously.

Wu YH, Yu Y, Hu HY.

Bioresour Technol. 2015 Sep;192:374-81. doi: 10.1016/j.biortech.2015.05.057. Epub 2015 Jun 2.

PMID:
26056779
20.

A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy.

Wong DM, Franz AK.

J Microbiol Methods. 2013 Nov;95(2):122-8. doi: 10.1016/j.mimet.2013.07.026. Epub 2013 Aug 9.

PMID:
23933493

Supplemental Content

Support Center