Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Yeast oligo-mediated genome engineering (YOGE).

DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM.

ACS Synth Biol. 2013 Dec 20;2(12):741-9. doi: 10.1021/sb400117c. Epub 2013 Nov 18.

2.

Oligonucleotide recombination: a hidden treasure.

Swingle B, Markel E, Cartinhour S.

Bioeng Bugs. 2010 Jul-Aug;1(4):263-6. doi: 10.4161/bbug.1.4.12098. Epub 2010 May 19.

3.

Gene and genome construction in yeast.

Gibson DG.

Curr Protoc Mol Biol. 2011 Apr;Chapter 3:Unit3.22. doi: 10.1002/0471142727.mb0322s94.

PMID:
21472698
4.

Genetic engineering of industrial strains of Saccharomyces cerevisiae.

Le Borgne S.

Methods Mol Biol. 2012;824:451-65. doi: 10.1007/978-1-61779-433-9_24.

PMID:
22160914
5.

MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering.

Bonde MT, Klausen MS, Anderson MV, Wallin AI, Wang HH, Sommer MO.

Nucleic Acids Res. 2014 Jul;42(Web Server issue):W408-15. doi: 10.1093/nar/gku428. Epub 2014 May 16.

6.

Multiplex engineering of industrial yeast genomes using CRISPRm.

Ryan OW, Cate JH.

Methods Enzymol. 2014;546:473-89. doi: 10.1016/B978-0-12-801185-0.00023-4.

PMID:
25398354
7.

Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome.

Gray M, Piccirillo S, Honigberg SM.

FEMS Microbiol Lett. 2005 Jul 1;248(1):31-6.

8.

The 50:50 method for PCR-based seamless genome editing in yeast.

Horecka J, Davis RW.

Yeast. 2014 Mar;31(3):103-12. doi: 10.1002/yea.2992. Epub 2013 Dec 13.

9.

Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.

Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE.

Biotechnol Lett. 2006 Apr;28(8):571-80.

PMID:
16614895
10.

PCR-based engineering of yeast genome.

Petracek ME, Longtine MS.

Methods Enzymol. 2002;350:445-69. No abstract available.

PMID:
12073329
11.

Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.

Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD.

Nature. 2011 Sep 14;477(7365):471-6. doi: 10.1038/nature10403.

12.

Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

Kutyna DR, Cordente AG, Varela C.

Methods Mol Biol. 2014;1152:157-68. doi: 10.1007/978-1-4939-0563-8_9.

PMID:
24744032
13.

Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.

Sugiyama M, Yamagishi K, Kim YH, Kaneko Y, Nishizawa M, Harashima S.

Appl Microbiol Biotechnol. 2009 Oct;84(6):1045-52. doi: 10.1007/s00253-009-2144-z. Epub 2009 Aug 15. Review.

PMID:
19685240
14.

Genome engineering using targeted oligonucleotide libraries and functional selection.

Diner EJ, Garza-Sánchez F, Hayes CS.

Methods Mol Biol. 2011;765:71-82. doi: 10.1007/978-1-61779-197-0_5.

15.

Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.

Wang HH, Church GM.

Methods Enzymol. 2011;498:409-26. doi: 10.1016/B978-0-12-385120-8.00018-8.

PMID:
21601688
16.

The improvement of amorpha-4,11-diene production by a yeast-conform variant.

Kong JQ, Wang W, Wang LN, Zheng XD, Cheng KD, Zhu P.

J Appl Microbiol. 2009 Mar;106(3):941-51. doi: 10.1111/j.1365-2672.2008.04063.x. Epub 2009 Jan 21. Erratum in: J Appl Microbiol. 2009 Aug;107(2):706. Jiang-Qiang, K [corrected to Kong, J-Q]; Wei, W [corrected to Wang, W]; Li-Na, W [corrected to Wang, L-N]; Xiao-Dong, Z [corrected to Zheng, X-D]; Ke-Di, C [corrected to Cheng, K-D]; Ping, Z [corrected to Zhu, P].

17.

A functional recT gene for recombineering of Clostridium.

Dong H, Tao W, Gong F, Li Y, Zhang Y.

J Biotechnol. 2014 Mar 10;173:65-7. doi: 10.1016/j.jbiotec.2013.12.011. Epub 2013 Dec 30.

PMID:
24384234
18.

Mapping meiotic breaks: Spo11 oligonucleotides precisely mark the spots.

Hwang PY, Hunter N.

Genome Biol. 2011;12(4):111. doi: 10.1186/gb-2011-12-4-111. Epub 2011 Apr 28.

19.
20.

A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.

Guerra OG, Rubio IG, da Silva Filho CG, Bertoni RA, Dos Santos Govea RC, Vicente EJ.

J Microbiol Methods. 2006 Dec;67(3):437-45. Epub 2006 Jul 10.

PMID:
16831478

Supplemental Content

Support Center