Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons.

Yang S, Edman LC, Sánchez-Alcañiz JA, Fritz N, Bonilla S, Hecht J, Uhlén P, Pleasure SJ, Villaescusa JC, Marín O, Arenas E.

Development. 2013 Nov;140(22):4554-64. doi: 10.1242/dev.098145. Epub 2013 Oct 23.

2.

Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system.

Bodea GO, Spille JH, Abe P, Andersson AS, Acker-Palmer A, Stumm R, Kubitscheck U, Blaess S.

Development. 2014 Feb;141(3):661-73. doi: 10.1242/dev.099937.

3.

Locomotor response to novelty correlates with the number of midbrain tyrosine hydroxylase positive cells in rats.

Jerzemowska G, Plucińska K, Kulikowski M, Trojniar W, Wrona D.

Brain Res Bull. 2012 Jan 4;87(1):94-102. doi: 10.1016/j.brainresbull.2011.10.014. Epub 2011 Oct 28.

PMID:
22056623
4.

Cooperation of nuclear fibroblast growth factor receptor 1 and Nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons.

Baron O, Förthmann B, Lee YW, Terranova C, Ratzka A, Stachowiak EK, Grothe C, Claus P, Stachowiak MK.

J Biol Chem. 2012 Jun 8;287(24):19827-40. doi: 10.1074/jbc.M112.347831. Epub 2012 Apr 18.

5.

Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo.

Andersson ER, Prakash N, Cajanek L, Minina E, Bryja V, Bryjova L, Yamaguchi TP, Hall AC, Wurst W, Arenas E.

PLoS One. 2008;3(10):e3517. doi: 10.1371/journal.pone.0003517. Epub 2008 Oct 27.

6.

A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors.

Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M.

Glia. 2005 May;50(3):258-69.

PMID:
15756692
7.

Migration of dopaminergic neurons in the embryonic mesencephalon of mice.

Kawano H, Ohyama K, Kawamura K, Nagatsu I.

Brain Res Dev Brain Res. 1995 May 26;86(1-2):101-13.

PMID:
7544698
8.

Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

Borrell V, Marín O.

Nat Neurosci. 2006 Oct;9(10):1284-93. Epub 2006 Sep 10.

PMID:
16964252
9.

Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling.

Abe P, Molnár Z, Tzeng YS, Lai DM, Arnold SJ, Stumm R.

J Neurosci. 2015 Sep 23;35(38):13053-63. doi: 10.1523/JNEUROSCI.1488-15.2015.

10.

CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons.

Abe P, Mueller W, Schütz D, MacKay F, Thelen M, Zhang P, Stumm R.

Development. 2014 May;141(9):1857-63. doi: 10.1242/dev.104224. Epub 2014 Apr 9.

11.

Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice.

Somaa FA, Bye CR, Thompson LH, Parish CL.

Exp Neurol. 2015 May;267:30-41. doi: 10.1016/j.expneurol.2015.02.017. Epub 2015 Feb 20.

PMID:
25708989
12.

SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation.

Zhu Y, Matsumoto T, Mikami S, Nagasawa T, Murakami F.

Development. 2009 Jun;136(11):1919-28. doi: 10.1242/dev.032276.

13.

Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation.

Huang HY, Chiu TL, Chang HF, Hsu HR, Pang CY, Liew HK, Wang MJ.

Stem Cells. 2015 May;33(5):1601-17. doi: 10.1002/stem.1949.

14.

CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus.

Schultheiß C, Abe P, Hoffmann F, Mueller W, Kreuder AE, Schütz D, Haege S, Redecker C, Keiner S, Kannan S, Claasen JH, Pfrieger FW, Stumm R.

Hippocampus. 2013 Dec;23(12):1345-58. doi: 10.1002/hipo.22180. Epub 2013 Sep 10.

PMID:
23929505
15.

Inhibition of chemokine (CXC motif) ligand 12/chemokine (CXC motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells.

Chen G, Chen SM, Wang X, Ding XF, Ding J, Meng LH.

J Biol Chem. 2012 Apr 6;287(15):12132-41. doi: 10.1074/jbc.M111.302299. Epub 2012 Feb 15. Erratum in: J Biol Chem. 2012 Jun 1;287(23):19336.

16.

CXC chemokine receptor 7 (CXCR7) affects the migration of GnRH neurons by regulating CXCL12 availability.

Memi F, Abe P, Cariboni A, MacKay F, Parnavelas JG, Stumm R.

J Neurosci. 2013 Oct 30;33(44):17527-37. doi: 10.1523/JNEUROSCI.0857-13.2013.

17.

CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson's disease.

Shimoji M, Pagan F, Healton EB, Mocchetti I.

Neurotox Res. 2009 Oct;16(3):318-28. doi: 10.1007/s12640-009-9076-3. Epub 2009 Jun 24.

PMID:
19551455
18.

A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse.

Fu Y, Yuan Y, Halliday G, Rusznák Z, Watson C, Paxinos G.

Brain Struct Funct. 2012 Apr;217(2):591-612. doi: 10.1007/s00429-011-0349-2. Epub 2011 Sep 21.

PMID:
21935672
19.

SFRP1 and SFRP2 dose-dependently regulate midbrain dopamine neuron development in vivo and in embryonic stem cells.

Kele J, Andersson ER, Villaescusa JC, Cajanek L, Parish CL, Bonilla S, Toledo EM, Bryja V, Rubin JS, Shimono A, Arenas E.

Stem Cells. 2012 May;30(5):865-75. doi: 10.1002/stem.1049.

20.

Mesodiencephalic dopaminergic neuronal differentiation does not involve GLI2A-mediated SHH-signaling and is under the direct influence of canonical WNT signaling.

Mesman S, von Oerthel L, Smidt MP.

PLoS One. 2014 May 27;9(5):e97926. doi: 10.1371/journal.pone.0097926. eCollection 2014.

Supplemental Content

Support Center