Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings.

Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S.

Chembiochem. 2013 Nov 25;14(17):2310-21. doi: 10.1002/cbic.201300332. Epub 2013 Oct 22.

PMID:
24151180
2.

From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.

Chatellier J, Hill F, Foster NW, Goloubinoff P, Fersht AR.

J Mol Biol. 2000 Dec 15;304(5):897-910.

PMID:
11124035
3.

Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.

Betancourt MR, Thirumalai D.

J Mol Biol. 1999 Apr 2;287(3):627-44.

PMID:
10092464
4.

From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.

Chatellier J, Hill F, Fersht AR.

J Mol Biol. 2000 Dec 15;304(5):883-96.

PMID:
11124034
5.

Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring.

van Duijn E, Simmons DA, van den Heuvel RH, Bakkes PJ, van Heerikhuizen H, Heeren RM, Robinson CV, van der Vies SM, Heck AJ.

J Am Chem Soc. 2006 Apr 12;128(14):4694-702.

PMID:
16594706
6.

Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form.

Erbse A, Yifrach O, Jones S, Lund PA.

J Biol Chem. 1999 Jul 16;274(29):20351-7.

7.

Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.

Koike-Takeshita A, Yoshida M, Taguchi H.

J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.

8.

Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.

Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL.

Nature. 1997 Aug 21;388(6644):792-8.

PMID:
9285593
9.

The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.

Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU.

Nat Struct Biol. 1998 Nov;5(11):977-85. Erratum in: Nat Struct Biol 1999 Feb;6(2):200.

PMID:
9808043
10.
11.
12.

Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.

Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU.

Cell. 2005 Jul 29;122(2):209-20.

13.

Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle.

Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T.

J Biol Chem. 2008 Aug 29;283(35):23765-73. doi: 10.1074/jbc.M802541200. Epub 2008 Jun 20.

15.

On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding.

Hayer-Hartl MK, Ewalt KL, Hartl FU.

Biol Chem. 1999 May;380(5):531-40.

PMID:
10384959
16.

Essential role of the chaperonin folding compartment in vivo.

Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M.

EMBO J. 2008 May 21;27(10):1458-68. doi: 10.1038/emboj.2008.77. Epub 2008 Apr 17.

17.

Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.

Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL.

Cell. 1996 Feb 9;84(3):481-90.

18.

GroEL/GroES: structure and function of a two-stroke folding machine.

Xu Z, Sigler PB.

J Struct Biol. 1998 Dec 15;124(2-3):129-41. Review.

PMID:
10049801
19.
20.

Chaperonin GroEL: structure and reaction cycle.

Krishna KA, Rao GV, Rao KR.

Curr Protein Pept Sci. 2007 Oct;8(5):418-25. Review.

PMID:
17979757

Supplemental Content

Support Center