Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

Addition of amino acid moieties to lapatinib increases the anti-cancer effect via amino acid transporters.

Maeng HJ, Kim ES, Chough C, Joung M, Lim JW, Shim CK, Shim WS.

Biopharm Drug Dispos. 2014 Jan;35(1):60-9. doi: 10.1002/bdd.1872. Epub 2013 Nov 19.

PMID:
24151179
2.

Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters.

Kwak EY, Shim WS, Chang JE, Chong S, Kim DD, Chung SJ, Shim CK.

Xenobiotica. 2012 Jul;42(7):603-13. doi: 10.3109/00498254.2011.646339. Epub 2012 Jan 10.

PMID:
22233275
3.
4.

The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions.

Polli JW, Humphreys JE, Harmon KA, Castellino S, O'Mara MJ, Olson KL, John-Williams LS, Koch KM, Serabjit-Singh CJ.

Drug Metab Dispos. 2008 Apr;36(4):695-701. doi: 10.1124/dmd.107.018374. Epub 2008 Jan 23.

5.

Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model.

Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, Catena R, Collantes M, Peñuelas I, Díaz-González JA, Calvo A.

BMC Cancer. 2010 May 11;10:188. doi: 10.1186/1471-2407-10-188.

6.

Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines.

Collins DM, Crown J, O'Donovan N, Devery A, O'Sullivan F, O'Driscoll L, Clynes M, O'Connor R.

Invest New Drugs. 2010 Aug;28(4):433-44. doi: 10.1007/s10637-009-9266-0. Epub 2009 Jun 5.

PMID:
19499189
7.
8.

Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines.

Olaussen KA, Commo F, Tailler M, Lacroix L, Vitale I, Raza SQ, Richon C, Dessen P, Lazar V, Soria JC, Kroemer G.

Oncogene. 2009 Dec 3;28(48):4249-60. doi: 10.1038/onc.2009.277. Epub 2009 Sep 14.

PMID:
19749798
9.

Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs.

Bhutia YD, Babu E, Ramachandran S, Ganapathy V.

Cancer Res. 2015 May 1;75(9):1782-8. doi: 10.1158/0008-5472.CAN-14-3745. Epub 2015 Apr 8. Review.

10.

[Effects of mammalian-target-of-rapamycin pathway on lapatinib resistance in breast cancer MDA-MB-231 cells].

Wang JD, Wang QS, Bai YZ, Kou DQ, Li XR, Chen L, Li R.

Zhonghua Yi Xue Za Zhi. 2013 Jun 25;93(24):1915-7. Chinese.

PMID:
24124748
11.

Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth.

Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Del Barco S, Martin-Castillo B, Menendez JA.

J Cell Physiol. 2011 Jan;226(1):52-7. doi: 10.1002/jcp.22333.

PMID:
20658522
12.

Effect of the tyrosine kinase inhibitor lapatinib on CUB-domain containing protein (CDCP1)-mediated breast cancer cell survival and migration.

Seidel J, Kunc K, Possinger K, Jehn C, Lüftner D.

Biochem Biophys Res Commun. 2011 Oct 14;414(1):226-32. doi: 10.1016/j.bbrc.2011.09.062. Epub 2011 Sep 17.

PMID:
21945930
13.
14.

HER2 as therapeutic target for overcoming ATP-binding cassette transporter-mediated chemoresistance in small cell lung cancer.

Minami T, Kijima T, Otani Y, Kohmo S, Takahashi R, Nagatomo I, Hirata H, Suzuki M, Inoue K, Takeda Y, Kida H, Tachibana I, Kumanogoh A.

Mol Cancer Ther. 2012 Apr;11(4):830-41. doi: 10.1158/1535-7163.MCT-11-0884. Epub 2012 Mar 2.

15.

Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib.

Walters DM, Lindberg JM, Adair SJ, Newhook TE, Cowan CR, Stokes JB, Borgman CA, Stelow EB, Lowrey BT, Chopivsky ME, Gilmer TM, Parsons JT, Bauer TW.

Neoplasia. 2013 Feb;15(2):143-55.

16.

Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells.

Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, Rahmeh M, Fejzo MS, Toft D, Jiang SW, Slamon DJ, Podratz KC.

Br J Cancer. 2008 Mar 25;98(6):1076-84. doi: 10.1038/sj.bjc.6604278. Epub 2008 Mar 11.

17.

Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression.

Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A.

PLoS One. 2010 Feb 2;5(2):e9024. doi: 10.1371/journal.pone.0009024.

18.

Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein.

Yang CH, Huang CJ, Yang CS, Chu YC, Cheng AL, Whang-Peng J, Yang PC.

Cancer Res. 2005 Aug 1;65(15):6943-9.

19.

The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib.

Normanno N, De Luca A, Maiello MR, Campiglio M, Napolitano M, Mancino M, Carotenuto A, Viglietto G, Menard S.

J Cell Physiol. 2006 May;207(2):420-7.

PMID:
16419029
20.

Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity.

Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S, Ramon y Cajal S, Arribas J, Baselga J.

Oncogene. 2009 Feb 12;28(6):803-14. doi: 10.1038/onc.2008.432. Epub 2008 Dec 8.

PMID:
19060928

Supplemental Content

Support Center