Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease.

Ryan BJ, Lourenço-Venda LL, Crabtree MJ, Hale AB, Channon KM, Wade-Martins R.

Free Radic Biol Med. 2014 Feb;67:58-68. doi: 10.1016/j.freeradbiomed.2013.10.008. Epub 2013 Oct 19.

2.

Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.

Perfeito R, Cunha-Oliveira T, Rego AC.

Free Radic Biol Med. 2013 Sep;62:186-201. doi: 10.1016/j.freeradbiomed.2013.05.042. Epub 2013 Jun 3. Review.

PMID:
23743292
3.

The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons.

Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM, Wade-Martins R.

Eur J Neurosci. 2008 Dec;28(12):2459-73. doi: 10.1111/j.1460-9568.2008.06527.x. Epub 2008 Nov 21.

5.

The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity.

Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E, Karsten P, Falkenburger B, Reinartz A, Winklhofer KF, Schulz JB.

PLoS Genet. 2012 Feb;8(2):e1002488. doi: 10.1371/journal.pgen.1002488. Epub 2012 Feb 2.

6.

DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease.

Wang X, Su B, Liu W, He X, Gao Y, Castellani RJ, Perry G, Smith MA, Zhu X.

Aging Cell. 2011 Oct;10(5):807-23. doi: 10.1111/j.1474-9726.2011.00721.x. Epub 2011 Jun 14.

7.

Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production.

Tapias V, Hu X, Luk KC, Sanders LH, Lee VM, Greenamyre JT.

Cell Mol Life Sci. 2017 Aug;74(15):2851-2874. doi: 10.1007/s00018-017-2541-x. Epub 2017 May 22.

PMID:
28534083
8.

Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson's disease.

Lehmensiek V, Tan EM, Liebau S, Lenk T, Zettlmeisl H, Schwarz J, Storch A.

Neurochem Int. 2006 Apr;48(5):329-40. Epub 2006 Jan 6.

PMID:
16406146
9.

Uncoupling of ATP-depletion and cell death in human dopaminergic neurons.

Pöltl D, Schildknecht S, Karreman C, Leist M.

Neurotoxicology. 2012 Aug;33(4):769-79. doi: 10.1016/j.neuro.2011.12.007. Epub 2011 Dec 19.

PMID:
22206971
10.

α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson's disease.

Harischandra DS, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG.

Toxicol Sci. 2015 Feb;143(2):454-68. doi: 10.1093/toxsci/kfu247. Epub 2014 Nov 21.

11.

The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease.

Ghosh A, Saminathan H, Kanthasamy A, Anantharam V, Jin H, Sondarva G, Harischandra DS, Qian Z, Rana A, Kanthasamy AG.

J Biol Chem. 2013 Jul 26;288(30):21955-71. doi: 10.1074/jbc.M112.444224. Epub 2013 Jun 10.

12.

Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death via the mitochondrial apoptotic pathway.

Zhai A, Zhu X, Wang X, Chen R, Wang H.

Eur J Pharmacol. 2013 Aug 5;713(1-3):58-67. doi: 10.1016/j.ejphar.2013.04.029. Epub 2013 May 9.

PMID:
23665112
13.

Inhibition of Excessive Oxidative Protein Folding Is Protective in MPP(+) Toxicity-Induced Parkinson's Disease Models.

Lehtonen Š, Jaronen M, Vehviläinen P, Lakso M, Rudgalvyte M, Keksa-Goldsteine V, Wong G, Courtney MJ, Koistinaho J, Goldsteins G.

Antioxid Redox Signal. 2016 Sep 10;25(8):485-97. doi: 10.1089/ars.2015.6402. Epub 2016 Jun 15.

PMID:
27139804
14.

Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation.

Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, Zheng W, Sastry N, Luo J, Rudow G, Troncoso JC, Cai H.

J Clin Invest. 2014 Jul;124(7):3032-46. doi: 10.1172/JCI72176. Epub 2014 May 27.

15.

IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.

Kim H, Kim SH, Cha H, Kim SR, Lee JH, Park JW.

Free Radic Res. 2016 Aug;50(8):853-60. doi: 10.1080/10715762.2016.1185519. Epub 2016 May 24.

PMID:
27142242
16.

Effects of methylmercury on dopamine release in MN9D neuronal cells.

Shao Y, Chan HM.

Toxicol Mech Methods. 2015;25(8):637-44. doi: 10.3109/15376516.2015.1053654. Epub 2015 Jun 9.

PMID:
26056851
17.

Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation.

Hung KC, Huang HJ, Lin MW, Lei YP, Lin AM.

PLoS One. 2014 Mar 19;9(3):e91074. doi: 10.1371/journal.pone.0091074. eCollection 2014.

18.

Parkinson disease: from pathology to molecular disease mechanisms.

Dexter DT, Jenner P.

Free Radic Biol Med. 2013 Sep;62:132-44. doi: 10.1016/j.freeradbiomed.2013.01.018. Epub 2013 Feb 4.

PMID:
23380027
19.

Angiogenin in Parkinson disease models: role of Akt phosphorylation and evaluation of AAV-mediated angiogenin expression in MPTP treated mice.

Steidinger TU, Slone SR, Ding H, Standaert DG, Yacoubian TA.

PLoS One. 2013;8(2):e56092. doi: 10.1371/journal.pone.0056092. Epub 2013 Feb 7.

20.

MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA.

Choi DC, Chae YJ, Kabaria S, Chaudhuri AD, Jain MR, Li H, Mouradian MM, Junn E.

J Neurosci. 2014 Sep 17;34(38):12725-37. doi: 10.1523/JNEUROSCI.0985-14.2014.

Supplemental Content

Support Center