Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

Costa A, Candeo A, Fieramonti L, Valentini G, Bassi A.

PLoS One. 2013 Oct 16;8(10):e75646. doi: 10.1371/journal.pone.0075646. eCollection 2013.

2.

Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor.

Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A.

Plant Physiol. 2013 Nov;163(3):1230-41. doi: 10.1104/pp.113.226050. Epub 2013 Sep 30.

3.

Chloroplast-Specific in Vivo Ca2+ Imaging Using Yellow Cameleon Fluorescent Protein Sensors Reveals Organelle-Autonomous Ca2+ Signatures in the Stroma.

Loro G, Wagner S, Doccula FG, Behera S, Weinl S, Kudla J, Schwarzländer M, Costa A, Zottini M.

Plant Physiol. 2016 Aug;171(4):2317-30. doi: 10.1104/pp.16.00652. Epub 2016 Jun 1.

4.

Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots.

Behera S, Wang N, Zhang C, Schmitz-Thom I, Strohkamp S, Schültke S, Hashimoto K, Xiong L, Kudla J.

New Phytol. 2015 Apr;206(2):751-60. doi: 10.1111/nph.13250. Epub 2015 Jan 5.

5.

Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations.

Rincón-Zachary M, Teaster ND, Sparks JA, Valster AH, Motes CM, Blancaflor EB.

Plant Physiol. 2010 Mar;152(3):1442-58. doi: 10.1104/pp.109.147256. Epub 2010 Jan 6.

6.

FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.

Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K.

Plant J. 2012 Jan;69(1):181-92. doi: 10.1111/j.1365-313X.2011.04780.x. Epub 2011 Oct 14.

7.

Imaging changes in cytoplasmic calcium using the Yellow Cameleon 3.6 biosensor and confocal microscopy.

Swanson SJ, Gilroy S.

Methods Mol Biol. 2013;1009:291-302. doi: 10.1007/978-1-62703-401-2_27.

PMID:
23681544
8.

High-resolution imaging of cytoplasmic Ca2+ dynamics in Arabidopsis roots.

Behera S, Kudla J.

Cold Spring Harb Protoc. 2013 Jul 1;2013(7). pii: pdb.prot073023. doi: 10.1101/pdb.prot073023.

PMID:
23818666
9.

Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca(2+)]cyt Patterns in Arabidopsis.

Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, Krebs M.

Mol Plant. 2015 Aug;8(8):1188-200. doi: 10.1016/j.molp.2015.05.006. Epub 2015 May 19.

10.

Imaging of calcium dynamics in pollen tube cytoplasm.

Barberini ML, Muschietti J.

Methods Mol Biol. 2015;1242:49-57. doi: 10.1007/978-1-4939-1902-4_4.

PMID:
25408442
11.

Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca²⁺ handling relationship in plant cells.

Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A.

Plant J. 2012 Jul;71(1):1-13. doi: 10.1111/j.1365-313X.2012.04968.x. Epub 2012 Apr 30.

12.

The D3cpv Cameleon reports Ca²⁺ dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity.

Loro G, Ruberti C, Zottini M, Costa A.

J Microsc. 2013 Jan;249(1):8-12. doi: 10.1111/j.1365-2818.2012.03683.x. Epub 2012 Nov 29.

13.

Measuring spatial and temporal Ca2+ signals in Arabidopsis plants.

Zhu X, Taylor A, Zhang S, Zhang D, Feng Y, Liang G, Zhu JK.

J Vis Exp. 2014 Sep 2;(91):e51945. doi: 10.3791/51945.

14.

Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis.

Monshausen GB, Messerli MA, Gilroy S.

Plant Physiol. 2008 Aug;147(4):1690-8. doi: 10.1104/pp.108.123638. Epub 2008 Jun 26.

15.

Boron deficiency increases the levels of cytosolic Ca(2+) and expression of Ca(2+)-related genes in Arabidopsis thaliana roots.

Quiles-Pando C, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A.

Plant Physiol Biochem. 2013 Apr;65:55-60. doi: 10.1016/j.plaphy.2013.01.004. Epub 2013 Jan 29.

PMID:
23416496
16.

Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator.

Miyamoto A, Bannai H, Michikawa T, Mikoshiba K.

Biochem Biophys Res Commun. 2013 May 3;434(2):252-7. doi: 10.1016/j.bbrc.2013.02.112. Epub 2013 Mar 25.

PMID:
23535376
17.

Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis.

Tanaka K, Swanson SJ, Gilroy S, Stacey G.

Plant Physiol. 2010 Oct;154(2):705-19. doi: 10.1104/pp.110.162503. Epub 2010 Jul 29.

18.

Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants.

Banerjee S, Garcia LR, Versaw WK.

Microsc Microanal. 2016 Apr;22(2):300-10. doi: 10.1017/S143192761600012X. Epub 2016 Feb 16.

PMID:
26879593
19.

Imaging of mitochondrial and nuclear Ca2+ dynamics in Arabidopsis roots.

Loro G, Costa A.

Cold Spring Harb Protoc. 2013 Aug 1;2013(8):781-5. doi: 10.1101/pdb.prot073049.

PMID:
23906911
20.

A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors.

Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG.

Plant Physiol. 2009 Nov;151(3):1197-206. doi: 10.1104/pp.109.142851. Epub 2009 Aug 21.

Supplemental Content

Support Center